K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

đặt S=1.2.3+2.3.4+....+47.48.49

4S=1.2.3.(4-0)+2.3.4.(5-1)+...+47.48.49.(50-46)

4S=1.2.3.4-1.2.3+2.3.4.5-1.2.3.4+....+47.48.49.50-46.47.48.49

4S=47.48.49.50-1.2.3

S=(47.48.49.50-1.2.3):4

12 tháng 10 2018

cool queen đúng rồi

24 tháng 5 2017

B=1*2*3+2*3*4+3*4*5+...+(n-1)n(n+1)

4B=1*2*3*4+2*3*4*(5-1)+3*4*5*(6-2)+...+(n-1)*n*(n+1)*[(n+2)-(n-2)]

4B=1*2*3*4+2*3*4*5-1*2*3*4+3*4*5*6-2*3*4*5+...+(n-1)n(n+1)(n+2)-(n-2)(n-1)n(n+1)

4B=(n-1)n(n+1)(n+2)

B=[(n-1)n(n+1)(n+2)]:4

Nho k cho minh voi nha

24 tháng 5 2017

xin loi ban toaan lop 6 ban a

14 tháng 9 2018

\(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)

\(4B=1.2.3.4+2.3.4.\left(5-1\right)+...+\left(n-1\right).n.\left(n+1\right)\left[\left(n+2\right)-\left(n-2\right)\right]\)

\(4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right)\left(n+2\right)-\left(n-2\right)\left(n-1\right).n.\left(n+1\right)\)

\(4B=\left(n-1\right).n.\left(n+1\right)\left(n+2\right)\)

\(B=\frac{\left(n-1\right).n.\left(n+1\right)\left(n+2\right)}{4}\)

Tham khảo nhé~

14 tháng 9 2018

Ta có: \(B=1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\)

\(\Leftrightarrow4B=4.\left[1.2.3+2.3.4+...+\left(n-1\right).n.\left(n+1\right)\right]\)

\(\Leftrightarrow4B=1.2.3.4+2.3.4.4+...+\left(n-1\right).n.\left(n+1\right).4\)

\(\Leftrightarrow4B=1.2.3.4+2.3.4\left(5-1\right)+...+\left(n-1\right)n.\left(n+1\right).\left[\left(n+2\right)-\left(n-2\right)\right]\)

\(\Leftrightarrow4B=1.2.3.4+2.3.4.5-1.2.3.4+...+\left(n-1\right).n.\left(n+1\right).\left(n+2\right)-\left(n-2\right).\)\(\left(n-1\right).n.\left(n+1\right)\)

\(\Leftrightarrow4B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\)

\(\Leftrightarrow B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)

Vậy \(B=\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\div4\)

29 tháng 3 2016

2Q=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.........+\frac{1}{9.10}-\frac{1}{10.11}\)

2Q=\(\frac{1}{1.2}-\frac{1}{10.11}\)

2Q=\(\frac{1}{2}-\frac{1}{110}\)

2Q=\(\frac{55}{110}-\frac{1}{110}\)

2Q=\(\frac{54}{110}\)

Q=\(\frac{54}{110}:2\)

Q=\(\frac{27}{110}\)

29 tháng 3 2016

bằng 27/100

8 tháng 1 2016

A=\(x = {n(n+1)(n+2){} \over 3}\)

 

8 tháng 1 2016

S=1.2+2.3+3.4+.............+n(n+1)

=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)

Ta có các công thức:

1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6

1 + 2 + 3 + ...+ n = n(n+1)/2

Thay vào ta có:

S = n(n+1)(2n+1)/6 + n(n+1)/2

=n(n+1)/2[(2n+1)/3 + 1]

=n(n+1)(n+2)/3

15 tháng 4 2019

A = 5/20.22 + 5/22.24+...+5/79.81

A = 5/2 . (2/20.22 + 2/22.24 + ... + 2/79.81)

A = 5/2 . (1/20 - 1/22 + 1/22 - 1/24 + ... + 1/79 - 1/81)

A = 5/2 . (1/20 - 1/81)

A = 5/2 . 61/1620

A = 61/648

15 tháng 4 2019

B = 1/1.2.3 + 1/2.3.4 + ... + 1/18.19.29

2B = 2/1.2.3 + 2/2.3.4 + ... + 2/18.19.20

\(\Rightarrow\)B = 1/1.2 + 1/2.3 + ... + 1/19.20

\(\Rightarrow\)B = 1/1.2 - 1/19.20

B = 1/2 - 1/380

B = 189/380

26 tháng 4 2016

1.2.3+2.3.4+...+48.49.50

=1.50

=50