Bài 5: (1 điểm ) Tính
\(\left(\frac{5^3}{8.13}+\frac{5^3}{13.18}+\frac{5^3}{18.23}+...+\frac{5^3}{93.98}\right).3\frac{17}{125}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có:
\(\frac{5^3}{8.13}+\frac{5^3}{13.18}+...+\frac{5^3}{93.98}\)
= \(5^2\left(\frac{5}{8.13}+\frac{5}{13.18}+...+\frac{5}{93.98}\right)\)
=\(25\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{93}-\frac{1}{98}\right)\)
=\(25\left(\frac{1}{8}-\frac{1}{98}\right)\)
=\(\frac{1125}{392}\)
=> \(\frac{1125}{392}.3\frac{17}{125}\)
= ...
\(\frac{11}{125}-\frac{17}{18}-\frac{5}{7}+\frac{4}{9}+\frac{17}{14}\)
\(=\frac{11}{125}-\left(\frac{17}{18}-\frac{8}{18}\right)+\left(\frac{17}{14}-\frac{10}{14}\right)\)
\(=\frac{11}{125}-\frac{1}{2}+\frac{1}{2}\)
\(=\frac{11}{125}+\left(\frac{1}{2}-\frac{1}{2}\right)\)= \(\frac{11}{125}\)
b) \(\left(6-\frac{2}{3}+\frac{1}{2}\right)-\left(5+\frac{5}{3}-\frac{3}{2}\right)-\left(3-\frac{7}{3}+\frac{5}{2}\right)\)
\(=\left(6-5-3\right)+\left(\frac{7}{3}-\frac{5}{3}-\frac{2}{3}\right)+\left(\frac{1}{2}+\frac{3}{2}-\frac{5}{2}\right)\)
\(=-2+0+\frac{-1}{2}\)
= \(-2-\frac{-1}{2}=-\left(2+\frac{1}{2}\right)=-2\frac{1}{2}\)
\(\left(-1\frac{1}{6}\right)\left(\frac{1-\frac{3}{5}+\frac{3}{11}-\frac{3}{13}}{\frac{1}{3}-\frac{1}{5}+\frac{1}{11}-\frac{1}{13}}\right)\left(\frac{4-\frac{4}{17}+\frac{4}{19}-\frac{4}{2013}}{5-\frac{5}{7}+\frac{5}{19}-\frac{5}{2013}}\right)\)
\(=-\frac{7}{6}.\left(\frac{3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{11}-\frac{1}{13}\right)}{\frac{1}{3}-\frac{1}{5}+\frac{1}{11}-\frac{1}{13}}\right):\left(\frac{4.\left(1-\frac{1}{7}+\frac{1}{19}-\frac{1}{2013}\right)}{5.\left(1-\frac{1}{7}+\frac{1}{19}-\frac{1}{2013}\right)}\right)\)
\(=-\frac{7}{6}.3:\frac{4}{5}=-\frac{7}{2}.\frac{5}{4}=-\frac{35}{8}\)
\(\frac{\frac{2}{3}+\frac{2}{5}-\frac{2}{9}}{\frac{4}{3}+\frac{4}{5}-\frac{4}{9}}\) _ \(\frac{3-\frac{3}{11}-\frac{3}{17}}{5-\frac{5}{11}-\frac{5}{17}}\)
=\(\frac{2\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}{4\left(\frac{1}{3}+\frac{1}{5}-\frac{1}{9}\right)}\)_ \(\frac{3\left(1-\frac{1}{11}-\frac{1}{17}\right)}{5\left(1-\frac{1}{11}-\frac{1}{17}\right)}\)= \(\frac{2}{4}-\frac{3}{5}\)= \(\frac{-1}{10}\)
\(=5^2\left(\frac{5}{8.13}+\frac{5}{13.18}+...+\frac{5}{93.98}\right).\frac{392}{17}\)
\(=5^2\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{93}-\frac{1}{98}\right)\frac{392}{17}\)
\(=25\left(\frac{1}{8}-\frac{1}{98}\right)\frac{392}{17}\)
\(=25\times\frac{45}{392}\times\frac{392}{17}\)
\(=25\times\frac{45}{17}\)
\(=\frac{1125}{17}\)
\(5^2.\left(\frac{5}{8.13}+\frac{5}{13.18}+\frac{5}{18.23}+...+\frac{5}{93.98}\right).\frac{392}{5^2}\)
\(\left(\frac{1}{8}-\frac{1}{13}+\frac{1}{13}-\frac{1}{18}+...+\frac{1}{93}-\frac{1}{98}\right).392=\left(\frac{1}{8}-\frac{1}{98}\right).392=45\)