Chứng minh rằng nếu a, b, c khác nhau đôi một thì:
a.
b. nếu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a là bội của b => a=b.k ( \(k\in N\)*)
b là bội của a \(\Rightarrow b=ah=b.k.h\) (\(h\in N\)*)
TH1: k=0, h=0
-> b=a=-b
Th2: k khác 0, h khác 0 thì chỉ có thể là k=1;h=1 hoặc k=-1; h=-1
a là bội của b → a = k.b (k € Z)
b là bội của a → b = k'.a (k' € Z)
vì a,b ≠ 0 nên ta nhân theo vế 2 đẳng thức trên
→ ab = k.k'.ba
→ 1 = k.k'
do k € Z , k' € Z → xảy ra 2 TH
Th1 : k = 1 và k' = 1 → a = b
Th2 : k = -1 và k' = -1 → a = -b
\(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}=0\)
\(\Leftrightarrow\frac{a}{b-c}=-\frac{b}{c-a}-\frac{c}{a-b}\)
\(=\frac{b}{a-c}+\frac{c}{b-a}\)
\(=\frac{b^2-ab+ac-c^2}{\left(c-a\right)\left(a-b\right)}\)
\(\Rightarrow\frac{a}{\left(b-c\right)^2}=\frac{b^2-ab+ac-c^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 1 )
Tương tự,ta có:
\(\frac{b}{\left(c-a\right)^2}=\frac{c^2-ba+ba-a^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 2 )
\(\frac{c}{\left(a-b\right)^2}=\frac{a^2-ac+cb-b^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\) ( 3 )
Cộng vế theo vế của ( 1 );( 2 );( 3 ) suy ra đpcm
jjjjjjjjjjjjjjjjjjjjj