K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc BDC=góc BEC=90 độ

=>CD vuông góc AB, BE vuông góc AC

góc ADH+góc AEH=180 độ

=>ADHE nội tiếp

 

AH
Akai Haruma
Giáo viên
30 tháng 4 2022

Đề thiếu yêu cầu. Bạn coi lại.

1 tháng 5 2022

chứng minh tam giác BMD cân                                                   nhờ các bạn giải hộ mình vshihi

a: ΔABC vuông tại A nên O là trung điểm của BC

Xét ΔCAB có CF/CA=CO/CB

nên FO//AB

=>FO vuông góc AC

góc AHO+góc AFO=180 độ

=>AHOF nội tiếp đường tròn đường kính AO

=>I là trung điểm  của AO

b: (O) và (I) đều đi qua A

OI=OA-IA=R-r'

=>(O) tiếp xúc (I) tại A

4 tháng 4 2023

loading...  loading...  loading...  

a: góc BHD+góc BMD=180 độ

=>BHDM nội tiếp

b: BHDM nội tiếp

=>góc HDM+góc HBM=180 độ

=>góc ADM=góc ABC

=>góc ADM=góc ADC

=>DA là phân giáccủa góc MDC

c: Xét tứ giác DHNC có

góc DHC=góc DNC=90 độ

=>DHNC nội tiếp

=>góc NHD=góc NDC

góc NHD+góc MHD

=180 độ-góc NCD+góc MBD

=180  độ+180 độ-góc ABD-góc ACD

=180 độ

=>M,H,N thẳng hàng

a: Xét (O) có

ΔABC nội tiếp

AB là đường kính

Do đó: ΔABC vuông tại C

b: Xét ΔABC vuông tại C có CH là đường cao

nên \(AH\cdot AB=AC^2\left(1\right)\)

Xét ΔMAB vuông tại A có AC là đường cao

nên \(MC\cdot BC=AC^2\left(2\right)\)

Từ (1) và (2) suy ra \(AH\cdot AB=MC\cdot BC\)