cho tam giác ABC vuông tại A có góc B = 30 độ. Chứng minh rằng BC =2. AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIẢI
Xét tam giác ABC vuông tại A có góc B = 30 độ
Trên tia đối của tia AC lấy điểm D sao cho AD = AC
Tam giác ABD = tam giác ABC ( c.g.c)
=> BD = BC ( 2 cạnh tương ứng )
=> góc ABD = góc ABC ( 2 góc tương ứng )
Tam giác BDC cân tại B có góc DBC có 60o nên là tam giác đều .
Do đó AC= 1/2 BC
Ta có tính chất: Trong tam giác vuông, cạnh đối diện với góc 300 thì bằng 1 nửa cạnh huyển
Ở đề bài ta có: BC = 2AC
=> \(\widehat{ABC}=30^0\)
Ta lại có: \(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)( định lí tổng ba góc trong một tam giác)
=> \(\widehat{ACB}=180^0-30^0=60^0\)
Vậy góc ACB = 600
a/ Xét tam giác ABM và tam giác EBM:
+ ^A = ^AEB ( = 90o)
+ BM chung
+ ^ABM = ^EBM ( do BM là phân giác ^B)
=> Tam giác ABM = Tam giác EBM (ch - gn)
b/ Ta có: ^A = ^B + ^C = 90o (do tam giác ABC vuông tại A)
Mà ^C = 30o (gt)
=> ^B = 60o
Tam giác ABM = Tam giác EBM (cmt)
=> AB = EB (cặp cạnh tương ứng)
=> Tam giác ABE cân tại B
Lại có: ^B = 60o (cmt)
=> Tam giác ABE đều
a: \(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
c: Xét ΔABE có BA=BE
nên ΔBAE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔBAE đều
Xét ΔABC vuông tại A có
\(\sin B=\dfrac{AC}{BC}\)
\(\Leftrightarrow\dfrac{AC}{BC}=\dfrac{1}{2}\)
hay BC=2AC
Xét \(\Delta\) \(ABC \) ta có :
\(\widehat{A} + \widehat{B} + \widehat{C} = 180^0\)
\(\rightarrow 90^0 + \widehat{B} + 30^0 = 180^0 \)
\(\widehat{B} = 180^0 - 30^0 - 90^0 = 180^0 - 120^0 = 60^0 \)
Tỉ số của \(\widehat{A}\) với \(\widehat{B}\) là :
\(\dfrac{\widehat{A}}{\widehat{B}}\) \(= \dfrac{30^0}{60^0} = \dfrac{1}{2}\)
\(\rightarrow BC = \dfrac{1}{2}AB\) \(( đpcm ) \)