K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

\(\Leftrightarrow\left(7x-11\right)^3=32\cdot25+200=1000\)

=>7x-11=10

=>7x=21

hay x=3

1: \(\Leftrightarrow\left(x-1\right)^x\cdot\left(x-1\right)^2-\left(x-1\right)^x=0\)

=>\(\left(x-1\right)^x\cdot\left[\left(x-1\right)^2-1\right]=0\)

=>\(x\left(x-1-1\right)\cdot\left(x-1\right)^x=0\)

=>x(x-2)(x-1)^x=0

=>x=0;x=2;x=1

2: \(\Leftrightarrow\left(6-x\right)^{2003}\left(x-1\right)=0\)

=>6-x=0 hoặc x-1=0

=>x=6;x=1

3: =>(7x-11)^3=32*25+200=1000

=>7x-11=10

=>7x=21

=>x=3

4: =>x^2-1=-3 hoặc x^2-1=3

=>x^2=-2(loại) hoặc x^2=4

=>x=2 hoặc x=-2

24 tháng 1 2018

23 tháng 12 2020

......

23 tháng 12 2020

Bạn giúp mình với ạ !!!!

 

22 tháng 10 2016

Theo đề ra, ta có: \(p,q\ge2\)\(7q+p;pq+11\ge2\)

Xét trường hợp 1: \(7p+q\) hoặc \(pq+11\) là chẵn

=> \(7p+q=2\) hoặc \(pq+11=2\)

=> \(7p=2-q< 2\)(mà \(p\ge2\) => loại) hoặc \(pq=2-11=-9< 0\)(loại)

Xét trường hợp 2: \(7p+q;pq+11\) đều là lẻ.

=> \(pq\) là chẵn => \(p\) hoặc \(q\) chẵn

*) Với \(p\) chẵn =>\(p=2\) => 2 số nguyên tố sẽ là: \(14+q\)\(2q+11\)

+) Xét \(q=3k\Rightarrow k=1\)(do q là số nguyên tố) . Thỏa mãn đề bài => q=3

+) Xét \(q=3k+1\Rightarrow14+q=15+3q⋮3\) mà 14+q>3 => Loại

+) Xét \(q=3k+2\Rightarrow2q+11=6k+15⋮3\) mà 6k+15 >3=> Loại

*) Với \(q\) chẵn => \(q=2\) => 2 số nguyên tố sẽ là: \(7q+2;2p+11\)

+) Xét \(p=3k\Rightarrow k=1\)(Do p là số nguyên tố) => \(p=3\) và nó thỏa mãn đề bài.

+) Xét \(p=3k+1\Rightarrow7p+2=21k+9⋮3\) mà 21k+9>3=> Loại.

+) Xét \(p=3k+2\Rightarrow2p+11=6k+15⋮3\) mà 6k+15> 3 => Loại.

Vậy các cặp số thỏa mãn là \(\left(p;q\right)=\left(2;3\right);\left(3;2\right)\)

 

 

 

 

10 tháng 1 2017

các cặp số thỏa mãn là (p;q)=(2;3);(3;2)banh

Nếu x=1 thì 5x=5; 7x=7

=>Nhận

Nếu x<>1 thì 5x chia hết cho 5 và 7x chia hết cho 7 thì loại

15 tháng 7 2023

Không biết mẫu số và x như thế nào? Bạn xem lại

Bài 1: Tìm x, biết 5 3.5 5 .2 2 3 2 2 x   Bài 2: Tìm x, biết: (7x-11)3 = 25.52 + 200 Bài 3: Tìm x biết : 2 15 2 15 x x    5 3   Bài 4: Tìm số tự nhiên x biết 8.6 + 288 : (x - 3)2 = 50 Bài 5: Tìm x: 22x – 1 + 6.28 = 14.28 Bài 6: Tìm số tự nhiên x biết: a) 23x + 52x = 2(52 + 23) – 33 b) 260 : (x + 4) = 5(23 + 5) – 3(32 + 22) c) (3x – 4)10 – 3 = 1021 d) (x2 + 4) (x + 2) Bài 7: Tìm số tự nhiên x,...
Đọc tiếp

Bài 1: Tìm x, biết 5 3.5 5 .2 2 3 2 2 x 
Bài 2: Tìm x, biết: (7x-11)3 = 25.52 + 200
Bài 3: Tìm x biết : 2 15 2 15 x x    5 3  
Bài 4: Tìm số tự nhiên x biết 8.6 + 288 : (x - 3)2 = 50
Bài 5: Tìm x: 22x – 1 + 6.28 = 14.28
Bài 6: Tìm số tự nhiên x biết:
a) 2
3x + 52x = 2(52 + 23) – 33 b) 260 : (x + 4) = 5(23 + 5) – 3(32 + 22)
c) (3x – 4)
10 – 3 = 1021 d) (x2 + 4) (x + 2)
Bài 7: Tìm số tự nhiên x, biết: 5 .5 .5 1000...0: 2 x x x   1 2 18
Bài 8: Tìm số tự nhiên x biết: 2x 2x1 2x2 ... 2x2015 22019 8
Bài 9: Tìm x N biết :
a) 1
3 + 23 + 33 + ...+ 103 = ( x +1)2; b) 1 + 3 + 5 + ...+ 99 = (x -2)2
Bài 10: Tìm các số tự nhiên x, y sao cho (2x + 1)(y – 5) = 12
DẠNG 3: SO SÁNH BIỂU THỨC, LUỸ THỪA
Bài 11:
So sánh hai tích sau mà không tính cụ thể giá trị của chúng:
a)
A 123.123B 124.122; b) A 987.984B 986.985.
c) C = 345.350 và D = 348.353 d) P = 75.36 + 23 và Q = 36.77 – 64
e) E = 35.56 + 17 và F = 34.57 – 14

Bài 12. Không tính kết quả của biểu thức, hãy so sánh
a)
A 2019.2021 B 20202 b)
2021
2022

10 1
10 1

M  


2022
2023

10 1
10 1

N  

.
Bài 13:
Cho A = 1 + 2012 + 20122 + 20123 + 20124 + … + 201271 + 201272
B = 2012
73 - 1. So sánh A và B.
Bài 14: Cho D     1 2 ... 22021. Chứng minh D 22022
Bài 15: Cho E = 6 +62 +...+ 62020. So sánh 5E + 6 với 361011
Bài 16: Cho S = 2.1+2.3 +2.32+2.32020. So sánh S + 2 với 4.91010
Bài 17: Cho S = 5.1+5.4 +5.42+5.42021 . So sánh 3S + 5 với 80. 16 1010
* Các bài toán về so sánh luỹ thừa
Loại 1: Biến đổi về cùng cơ số hoặc số mũ

Bài 1: Hãy so sánh:
a.
1619 825 b. 2711 818 . c) 1619 825 d) 6255 1257 .
Bài 2: Hãy so sánh:
a.
1287 424 b. 536 1124 c. 3260 8150 d. 3500 7300 .
PBT CLB Toán 6 Cô Yến -TNT
Bài 3: Hãy so sánh:
a)
3210 2350 b) 231 321 c) 430 3 24 . . 10
Bài 4: Hãy so sánh:
a)
32n 23n * n N b) 5300 3500 .
Bài 5: Hãy so sánh:
a)
32 2 n n 9n12 b) 256n 16n5 (với n N )
Loại 2: Đưa về một tích trong đó có thừa số giống nhau
Bài 1: Hãy so sánh:
a)
202303 303202 . b) 2115 27 49 5 8 . . c)3.275 2435 .
Bài 2: Hãy so sánh:
a)
2015 2015 2015 2014 2015 2015 2016 2015 . b) 2015 2015 10 9 201610.
Bài 3: Hãy so sánh:
a)
A   72 72 45 44 B   72 72 44 43 . b) 3775 7150 .
Bài 4: Hãy so sánh:
a)
523 6 5 . 22 b) 7 2 . 13 216 c) 1512 81 125 3 5 . .
Bài 5: Hãy so sánh 9920 999910 .
Loại 3: So sánh thông qua một lũy thừa trung gian
Bài 1: Hãy so sánh 2 3 4 30 30 30   3 24 . 10 .
Bài 2: Hãy so sánh:
a)
2225 3151 b) 19920 200315 c) 291 536.
Bài 3: Hãy so sánh:
a)
9920 9 11 10 30 . b) 96142 100 23 . 93 .
Bài 4: Hãy so sánh:
a)
10750 7375 b) 3339 1121.
Bài 5: Hãy so sánh:
a)
A 123456789 B 567891234 . b) 111979 371320 .
Loại 4: So sánh thông qua hai lũy thừa trung gian
Bài 1: Hãy so sánh
a)
1720 3115 b) 19920 10024 c) 3111 1714 .
Bài 2: Hãy so sánh
a)
111979 371321 b) 10750 5175 c) 3201 6119 .
Bài 3: Chứng minh rằng: a) 2 5 1995 863 . b) 5 2 5 27 63 28   .
 

 

1
13 tháng 10 2023

huhuhuhu help me cứi tui

11 tháng 7 2016

a) 3x + 7x = x .(3 + 7) = x . 10

Với x thuộc N thì 3x + 7x luôn có ước là 10 => 3x + 7x chia hết cho 10 => 3x + 7x chia hết cho 2 và 5 => 3x + 7x có ít nhất 3 ước là 1; 2; 5, không là số nguyên tố

Vậy không tìm được giá trị x thỏa mãn

b) 7x - 4x = 3x

+ Với x = 0 => 7x - 3x = 0 - 0 = 0, không là số nguyên tố, loại

+ Với x = 1 => 7x - 4x = 7 - 4 = 3, là số nguyên tố, chọn

+ Với x > 1 thì 7x - 4x sẽ có ít nhất 3 ước là 1 ; x; 3, không là số nguyên tố, loại

Vậy x = 1

Ủng hộ mk nha ^_-