Tìm x thuộc Z biết
\(\frac{1}{2}+\frac{1}{3}-2\frac{1}{5}\le x<4\frac{1}{5}+3\frac{1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có: 1/2-(1/3+1/4)= -1/12
1/48-(1/16-1/6)=1/8
suy ra: -1/12<x<1/8
<=> -2/24<x<3/24
=>x thuộc:(-1/24 ;0 ;1/24 ;2/24 ;3/24)
Câu 1,
x+y=-1/3 ; y+z=5/4 ; x+z= 4/3
=> 2(x+y+z)=9/4
=> x+y+z=9/8
Ta lại có: x+y=-1/3
=> z=9/8 -(-1/3)=35/24
Ta lại có: z+y=5/4
=> y=-5/24
=> x=.....
Câu 2:
\(-4\le x\le-\frac{11}{18}\)
\(3\frac{1}{3}\div2\frac{2}{5}-1< x< 7\frac{2}{3}\cdot\frac{3}{7}+\frac{5}{7}\)
\(\frac{25}{18}-1< x< \frac{23}{7}+\frac{5}{7}\)
\(\frac{7}{18}< x< \frac{28}{7}\)
\(\frac{49}{126}< x< \frac{504}{126}\)
\(\Rightarrow x=\left(\frac{50}{126};\frac{51}{126};\frac{52}{126};......;\frac{503}{126}\right)\)
Ta có :
\(\frac{1}{2}+-\frac{3}{4}< x\le\frac{1}{5}+1\frac{4}{5}\)
\(\Rightarrow\frac{2}{4}+-\frac{3}{4}< x\le\frac{1}{5}+\frac{9}{5}\)
\(\Rightarrow\frac{-1}{4}< x\le\frac{10}{5}\)
\(\Rightarrow\frac{-1}{4}< x\le2\)
Mà \(x\in Z\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)
Bài 3:
a,Đặt A = \(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
A = \(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)
2A = \(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)
2A + A = \(\left(1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\right)+\left(\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\right)\)
3A = \(1-\frac{1}{2^6}\)
=> 3A < 1
=> A < \(\frac{1}{3}\)(đpcm)
b, Đặt A = \(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)
3A = \(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)
3A + A = \(\left(1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{4^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\right)-\left(\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\right)\)
4A = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)
=> 4A < \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\) (1)
Đặt B = \(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)
3B = \(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)
3B + B = \(\left(3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\right)+\left(1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\right)\)
4B = \(3-\frac{1}{3^{99}}\)
=> 4B < 3
=> B < \(\frac{3}{4}\) (2)
Từ (1) và (2) suy ra 4A < B < \(\frac{3}{4}\)=> A < \(\frac{3}{16}\)(đpcm)
\(a,\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)< x< \left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}\)
\(taco:\left(\frac{31}{20}-\frac{26}{45}\right)\cdot\left(\frac{-36}{35}\right)=\frac{35}{36}\cdot\frac{-36}{35}=-1\)
\(\left(\frac{51}{56}+\frac{8}{21}+\frac{1}{3}\right)\cdot\frac{8}{13}=\frac{13}{8}\cdot\frac{8}{13}=1\)
\(=>x=0\)
\(b,\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}< x< \frac{-1}{2}+2+\frac{5}{2}\)(dau <co dau gach ngang o duoi nha)
\(taco:\frac{-5}{6}+\frac{8}{3}+\frac{29}{-3}=\frac{-5}{6}+\frac{8}{3}+\frac{-29}{3}=\frac{-5}{6}+\frac{16}{6}+\frac{-58}{6}=\frac{-47}{6}=-7,8\)
\(\frac{-1}{2}+2+\frac{5}{2}=\frac{3}{2}+\frac{5}{2}=4\)
tu do \(=>x=-7,8;...;0;1;2;3;4\)