Câu 4 Cho tam giác ABC cân tại A (Góc A<90 độ). Kẻ BD vuông góc AC (D thuộc AC), CE vuông góc AB (E thuộc AB), BD và CE cắt nhau tại H.
a) Chứng minh: BD = CE b, Chứng minh: tam giác BHC cân
b) Chứng minh: AH là đường trung trực của BC
c) Trên tia BD lấy điểm K sao cho D là trung điểm của BK. Kẻ AM vuông góc với CK. Chứng minh E, H, K thẳng hàng
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔABD=ΔACE
Suy ra: BD=CE và AD=AE
b: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EB=DC
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{ECB}=\widehat{DBC}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
hay ΔHBC cân tại H
c: Ta có: AB=AC
nên A nằm trên đường trung trực của BC(1)
Ta có: HB=HC
nên H nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AH là đường trung trực của BC