K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2016

A< 1+1/(23-2)+1/(33-3)+...+1/(n3-n)

Đặt B=1/(23-2)..... =>B=1/1.2.3+1/2.3.4+...+1/(n-1)n(n+1) =1/2.(1/1.2-1/2.3+1/2.3-1/3.4+1/3.4....-1/n(n+1))

                                  =1/2.(1/2-1/n(n+1))=1/4-1/2.n.(n+1)<1/4

=>B<1/4 =>A=B+1<(1/4)+1

 =>A<5/4

28 tháng 4 2016

999 - 888 - 111 + 111 - 111 + 111 - 111

= 111 - 111 + 111 -111 + 111 - 111

= 0 + 111 - 111 + 111 - 111

= 111 - 111 + 111 - 111

= 0 + 111 - 111

= 111 - 111

= 0

Đáp số: 0

13 tháng 6 2017

Với n = 1 thì ta có: 

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}=\frac{13}{12}>1\)

Giả sử bất đẳng thức trên đúng tới n = k hay

\(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}>1\)

Ta cần chứng minh bất đẳng thức cũng đúng với n = k + 1.

Ta có: \(\frac{1}{k+2}+\frac{1}{k+3}+...+\frac{1}{3k+4}\)

\(=\left(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}\right)+\left(\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}\right)\)

Ta đã có: \(\frac{1}{k+1}+\frac{1}{k+2}+...+\frac{1}{3k+1}>1\) nên ta cần chứng minh

\(\frac{1}{3k+2}+\frac{1}{3k+3}+\frac{1}{3k+4}-\frac{1}{k+1}>0\)

\(\Leftrightarrow\frac{2}{\left(3k+2\right)\left(3k+3\right)\left(3k+4\right)}>0\) đúng

Vậy theo quy nạp thì \(\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{3n+1}>1\) đúng với mọi n nguyên dương.

30 tháng 6 2020

Cho t hỏi sao lại có đoạn \(\frac{1}{k+2}+\frac{1}{k+3}+....+\frac{1}{3k+4}\)tòi ra và phải c/minh nó lớn hơn 0??

26 tháng 2 2022

 Xét số hạng tổng quát ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{\left(n+1\right)n}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)\)

\(=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)< \sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\sqrt{n}\cdot\frac{2}{\sqrt{n}}\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)=\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

Áp dụng vào bài tập, ta có:

\(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

\(< \frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}+\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}+...+\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\)

\(=2-\frac{2}{\sqrt{n+1}}< 2\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
31 tháng 10 2020

Lời giải:

Chứng minh vế thứ nhất:

Với mọi số tự nhiên $i< n$ ta có: $\frac{1}{n+i}> \frac{1}{n+n}$. Thay $i=1,2,...$ ta có:

$\frac{1}{n+1}>\frac{1}{n+n}$

$\frac{1}{n+2}>\frac{1}{n+n}$

.....

Do đó: $\frac{1}{n+1}+\frac{1}{n+2}+...+\frac{1}{n+n}>\frac{1}{n+n}+\frac{1}{n+n}+...+\frac{1}{n+n}=\frac{n}{n+n}=\frac{1}{2}$

(đpcm)

Vế thứ hai có vẻ không đúng lắm, vì $n$ càng tăng thì giá trị của tổng càng tăng theo nên mình nghĩ khi $n$ tiến tới vô cực thì tổng trên cũng vượt khỏi $\frac{3}{4}$