Tìm x
1 + x = 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\Delta=\left(-4\right)^2-4.2m=16-8m\)
Để pt có nghiệm x1, x2 thì \(\Delta>0\)
\(\Leftrightarrow16-8m>0\)
\(\Leftrightarrow-8m>-16\)
\(\Leftrightarrow m< 2\)
b.
Theo hệ thức Vi-ét, ta có:\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1.x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1.x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow4^2-2.2m-4-16=0\)
\(\Leftrightarrow-4m-4=0\)
\(\Leftrightarrow m=-1\)
a.
Phương trình có 2 nghiệm khi:
\(\Delta'=4-2m\ge0\Rightarrow m\le2\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m\end{matrix}\right.\)
\(x_1^2+x_2^2-x_1-x_2=16\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)=16\)
\(\Leftrightarrow16-4m-4=16\)
\(\Leftrightarrow m=-1\) (thỏa mãn)
b: x1=3x2 và x1+x2=2m-2
=>3x2+x2=2m-2 và x1=3x2
=>x2=0,5m-0,5 và x1=1,5m-1,5
x1*x2=-2m
=>-2m=(0,5m-0,5)(1,5m-1,5)
=>-2m=0,75(m^2-2m+1)
=>0,75m^2-1,5m+0,75+2m=0
=>\(m\in\varnothing\)
c: x1/x2=3
x1+x2=2m-2
=>x1=3x2 và x1+x2=2m-2
Cái này tương tự câu b nên kết quả vẫn là ko có m thỏa mãn
a: Để phương trình có hai nghiệm trái dấu thì
m^2+2m+3<0
=>m^2+2m+1+2<0
=>(m+1)^2+2<0(vô lý)
b:
Δ=(2m+3)^2-4(m^2+2m+3)
=4m^2+12m+9-4m^2-8m-12
=4m-3
Để phương trình có hai nghiệm phân biệt thì 4m-3>0
=>m>3/4
4x1x2=(x1+x2)^2-2(x1+x2)+5
=>4*(m^2+2m+3)=(2m+3)^2-2(2m+3)+5
=>4m^2+8m+12=4m^2+12m+9-4m-6+5
=>8m+12=8m-1
=>12=-1(vô lý)
Ptr có `2` nghiệm `<=>\Delta' >= 0`
`<=>[-(m-1)]^2-(m+1) >= 0`
`<=>m^2-2m+1-m-1 >= 0`
`<=>m(m-3) >= 0<=>[(m <= 0),(m >= 3):}`
`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1.x_2=c/a=m+1):}`
Ta có: `[x_1]/[x_2]+[x_2]/[x_1]=4`
`<=>[x_1 ^2+x_2 ^2]/[x_1.x_2]=4`
`<=>[(x_1+x_2)^2-2x_1.x_2]/[x_1.x_2]=4`
`<=>[(2m-2)^2-2(m+1)]/[m+1]=4` `(m ne -1)`
`=>4m^2-8m+4-2m-2=4m-4`
`<=>4m^2-14m+8=0`
`<=>m=[7+-\sqrt{17}]/4` (ko t/m)
`=>` Ko có giá trị `m` t/m
a=1
b=-2(m+1)
c=m2+2m
△'=(m+1)2-(m2+2m)1=m2+2m+1-m2-2m=1>0 ∀ m
=> pt luôn có 2n0 phân biệt ∀m
cho phương trình x^2+(n-1)x-m=0 tìm m để phương trình có 2 nghiệm x1, x2 thỏa mọi x1<x2 và x1-2x2 =2
\(ac=-2< 0\Rightarrow\) phương trình luôn có 2 nghiệm pb trái dấu
Mà \(x_1>x_2\Rightarrow\left\{{}\begin{matrix}x_2< 0\\x_1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left|x_1\right|=x_1\\\left|x_2\right|=-x_2\end{matrix}\right.\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2\end{matrix}\right.\)
\(\left|2x_1\right|-\left|x_2\right|=2+x_1\)
\(\Leftrightarrow2x_1+x_2=2+x_1\)
\(\Leftrightarrow x_1+x_2=2\)
\(\Leftrightarrow m-1=2\)
\(\Rightarrow m=3\)
\(x^2-\left(m-1\right)x-2=0\)
a=1; b=-m+1; c=-2
Vì a*c=-2<0
nên phương trình luôn có hai nghiệm phân biệt
Theo Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left[-\left(m-1\right)\right]}{1}=m-1\\x_1\cdot x_2=\dfrac{c}{a}=\dfrac{-2}{1}=-2\end{matrix}\right.\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1x_2\)
\(=\left(m-1\right)^2-4\cdot\left(-2\right)=\left(m-1\right)^2+8\)
=>\(x_1-x_2=\pm\sqrt{\left(m-1\right)^2+8}\)
\(\dfrac{x_1}{x_2}=\dfrac{x_2^2-3}{x_1^2-3}\)
=>\(x_1\left(x_1^2-3\right)=x_2\left(x_2^2-3\right)\)
=>\(x_1^3-x_2^3=3x_1-3x_2\)
=>\(\left(x_1-x_2\right)\left(x_1^2+x_2^2+x_1x_2-3\right)=0\)
=>\(\left(x_1-x_2\right)\left[\left(x_1+x_2\right)^2-x_1x_2-3\right]=0\)
=>\(\left[{}\begin{matrix}x_1-x_2=0\\\left(m-1\right)^2-\left(-2\right)-3=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}\sqrt{\left(m-1\right)^2+8}=0\left(vôlý\right)\\\left(m-1\right)^2-1=0\end{matrix}\right.\)
=>\(\left(m-1\right)^2=1\)
=>\(\left[{}\begin{matrix}m-1=1\\m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=2\\m=0\end{matrix}\right.\)
1+x=2
x=2-1
x=1.
1 + x = 2
<=> x = 2 - 1
<=> x = 1
Vậy x = 1