(1-1/10):(1+1/10):(1+1/11):(1+1/12): ... :(1+1/500)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(A=\dfrac{10^{11}-1}{10^{12}-1}< 1\)
\(\Leftrightarrow A< \dfrac{10^{11}-1+11}{10^{12}-1+11}=\dfrac{10^{11}+10}{10^{12}+10}=\dfrac{10\left(10^{10}+1\right)}{10\left(10^{11}+1\right)}=\dfrac{10^{10}+1}{10^{11}+1}=B\)
Vậy \(\dfrac{10^{11}-1}{10^{12}-1}< \dfrac{10^{10}+1}{10^{11}+1}\)
Vậy...
Bài1:
a)Ta có:
\(-203< 0;\dfrac{1}{2017}>0\)
Nên \(-203< \dfrac{1}{2017}\)
b)\(\dfrac{7}{29}và\dfrac{12}{47}\)
c)Đặt \(A=\dfrac{10^{11}+1}{10^{12}+1}\);\(B=\dfrac{10^{12}+1}{10^{13}+1}\)
Ta có:\(10A=\dfrac{10^{12}+1+9}{10^{12}+1}=1+\dfrac{9}{10^{12}+1}\)
\(10B=\dfrac{10^{13}+1+9}{10^{13}+1}=1+\dfrac{9}{10^{13}+1}\)
Do đó:\(10A>10B\Rightarrow A>B\)
Bài2:
a)\(500>2^x>100\)
Ta có:\(100< 2^7< 2^8< 500\)
\(\Rightarrow x\in\left\{7;8\right\}\)
Vậy...
Câu sau tương tự
a) Ta có: \(-203< 0;\dfrac{1}{2017}>0\)
\(\Rightarrow\dfrac{1}{2017}>-203\)
Giải:
a) Gọi dãy đó là A, ta có:
\(A=\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\)
\(2A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\)
\(2A-A=\left(\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2013}}\right)-\left(\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2014}}\right)\)
\(A=\dfrac{1}{2}-\dfrac{1}{2^{2014}}\)
Vì \(\dfrac{1}{2}< 1;\dfrac{1}{2^{2014}}< 1\) nên \(\dfrac{1}{2}-\dfrac{1}{2^{2014}}< 1\)
\(\Rightarrow A< 1\)
b) \(A=\dfrac{10^{11}-1}{10^{12}-1}\) và \(B=\dfrac{10^{10}+1}{10^{11}+1}\)
Ta có:
\(A=\dfrac{10^{11}-1}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-10}{10^{12}-1}\)
\(10A=\dfrac{10^{12}-1+9}{10^{12}-1}\)
\(10A=1+\dfrac{9}{10^{12}-1}\)
Tương tự:
\(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+10}{10^{11}+1}\)
\(10B=\dfrac{10^{11}+1+9}{10^{11}+1}\)
\(10B=1+\dfrac{9}{10^{11}+1}\)
Vì \(\dfrac{9}{10^{12}-1}< \dfrac{9}{10^{11}+1}\) nên \(10A< 10B\)
\(\Rightarrow A< B\)
\(\left(1-\dfrac{1}{10}\right):\left(1+\dfrac{1}{10}\right):\left(1+\dfrac{1}{11}\right):\left(1+\dfrac{1}{12}\right):...:\left(1+\dfrac{1}{500}\right)\)
=\(\dfrac{9}{10}:\dfrac{11}{10}:\dfrac{12}{11}:\dfrac{13}{12}:...:\dfrac{501}{500}\)
=\(\dfrac{9}{10}.\dfrac{10}{11}:\dfrac{12}{11}:\dfrac{13}{12}:...:\dfrac{501}{500}\)
=\(\dfrac{9}{11}:\dfrac{12}{11}:\dfrac{13}{12}:...:\dfrac{501}{500}\)=\(\dfrac{9}{501}\)=\(\dfrac{3}{167}\)
gút chóp bẹn hìn