Tính tổng A biết A 2 7x9 2 9x11 2 11x13 ... 2 97x99 2 99x101
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/(7 × 9) + 2/(9 × 11) + 2/(11 × 13) + ... + 2/(97 × 99)
= 1/7 - 1/9 + 1/9 - 1/11 + 1/11 - 1/13 + ... + 1/97 - 1/99
= 1/7 - 1/99
= 92/693
Ta có : \(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{11.13}\)
\(=\frac{1}{3}+\frac{1}{5}-\frac{1}{5}+......+\frac{1}{11}-\frac{1}{13}\)
\(=\frac{1}{3}-\frac{1}{13}\)
\(=\frac{10}{39}\)
\(\frac{2}{3\times5}+\frac{2}{5\times7}+...+\frac{2}{11\times13}\)
\(=\frac{1}{3\times5}+\frac{1}{5\times7}+...+\frac{1}{11\times13}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\)
\(=\frac{1}{3}-\frac{1}{13}=\frac{10}{39}\)
\(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\)\(...+\frac{2}{8.9}+\frac{2}{9.10}\)
Đặt \(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(B=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}+\frac{2}{9.10}\)
Ta có:
\(A=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}+\frac{2}{13.15}\)
\(A=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(A=\frac{1}{3}-\frac{1}{15}\)
\(A=\frac{4}{15}\)
\(B=\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{8.9}+\frac{2}{9.10}\)
\(B=2\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)
\(B=2\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)
\(B=2\left(1-\frac{1}{10}\right)\)
\(B=2.\frac{9}{10}\)
\(B=\frac{9}{5}\)
\(\Rightarrow A+B=\frac{4}{15}+\frac{9}{5}\)
\(=\frac{31}{15}\)
Vậy biểu thức trên có giá trị là \(\frac{31}{15}\)
=2/5-2/7+ 2/7-2/9+2/9-2/11+2/11-2/13+2/13-2/15
=2/5-(2/7-2/7)-(2/9-2/9)-(2/11-2/11)-(2/13-2/13)-2/15
=2/5-0-0-0-0-2/15
=2/5-2/15
4/15
\(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+\frac{2}{9\cdot11}+\frac{2}{11\cdot13}+\frac{2}{13\cdot15}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}\)
\(=\frac{4}{15}\)
Chúc bn hok giỏi !!!!!!!!! ^_^
\(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.........+\frac{1}{13}-\frac{1}{15}\)
\(=1-\frac{1}{15}\)
\(=\frac{14}{15}\)
Ta có :
\(G=\frac{2}{11.13}+\frac{2}{13.15}+\frac{2}{15.17}+...+\frac{2}{97.99}+\frac{2}{99.101}\)
\(G=\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\)
\(G=\left(\frac{1}{13}-\frac{1}{13}\right)+\left(\frac{1}{15}-\frac{1}{15}\right)+\left(\frac{1}{17}-\frac{1}{17}\right)+...+\left(\frac{1}{99}-\frac{1}{99}\right)+\left(\frac{1}{11}-\frac{1}{101}\right)\)
\(G=\frac{1}{11}-\frac{1}{101}\)
\(G=\frac{101}{1111}-\frac{11}{1111}\)
\(G=\frac{101-11}{1111}\)
\(G=\frac{90}{1111}\)
Vậy \(G=\frac{90}{1111}\)
Chúc bạn học tốt ~
\(G=\frac{2}{11\times13}+\frac{2}{13\times15}+\frac{2}{15\times17}+...+\frac{2}{97\times99}+\frac{2}{99\times101}\)
\(G=2\times\left(\frac{1}{11\times13}+\frac{1}{13\times15}+\frac{1}{15\times17}+...+\frac{1}{97\times99}+\frac{1}{99\times101}\right)\)
\(G=2\times\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+\frac{1}{15}-\frac{1}{17}+...+\frac{1}{97}-\frac{1}{99}+\frac{1}{99}-\frac{1}{101}\right)\)
( GẠCH BỎ CÁC PHÂN SỐ GIỐNG NHAU TRONG NGOẶC)
\(G=2\times\left(\frac{1}{11}-\frac{1}{101}\right)\)
\(G=2\times\frac{90}{1111}\)
\(G=\frac{180}{1111}\)
MK VIẾT ĐỀ BÀI NHƯ THẾ CÓ ĐÚNG KO BN!
MK CHỈ NGHĨ RA VẬY THÔI
CHÚC BN HỌC TỐT!!!!
Ta có: A = \(\frac{6}{5\times7}+\frac{6}{7\times9}+\frac{6}{9\times11}+...+\frac{6}{95\times97}+\frac{6}{97\times99}\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5\times7}+\frac{1}{7\times9}+\frac{1}{9\times11}+...+\frac{1}{95\times97}+\frac{1}{97\times99}\right)\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+...+\frac{1}{95}-\frac{1}{97}+\frac{1}{97}-\frac{1}{99}\right)\)
\(\Rightarrow A=\frac{1}{6}\left(\frac{1}{5}-\frac{1}{99}\right)\)
=> A = ...
\(\frac{1}{2}+\frac{5}{6}+\frac{11}{12}+\frac{19}{20}+...+\frac{89}{90}\)
\(=1-\frac{1}{2}+1-\frac{1}{6}+1-\frac{1}{12}+1-\frac{1}{20}+...+1-\frac{1}{90}\)
\(=9-\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
\(=9-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=9-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)\)
\(=9-\left(1-\frac{1}{10}\right)\)
\(=9-\frac{9}{10}=\frac{81}{10}\)
2/11x13+2/13x15+2/15x17+...+2/97x99
=1/11-1/13+1/13-1/15+1/15-1/17+...+1/97-1/99
=1/11-1/99
=8/99