K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2016

x,y>0

=>x2y>0

giả sử

x + y =3

x=1 

y=2

vậy nên

x2y<=4

=12*2<=4

=1<=4

27 tháng 4 2016

Áp dụng BĐT Cô-si cho 2 số thực dương, ta có:

\(3=x+y=\frac{x}{2}+\frac{x}{2}+y\ge3\sqrt[3]{\frac{x^2y}{4}}\Rightarrow\sqrt[3]{\frac{x^2y}{4}}\le1\Rightarrow\frac{x^2y}{4}\le1\Rightarrowđpcm.\)

6 tháng 8 2017

x^4-5x^2+4=x^4-x^2-(4x^2-4) = x^2(x^2-1)-4(x^2-1)

=(x^2-4)(x^2-1)

=(x-2)(x+2)(x-1)(x+1)                                                            

10517031_1511266072437640_247287281_n.jpg

DD
21 tháng 11 2020

\(\frac{1}{2x+y+z}\le\frac{1}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\le\frac{1}{4}\left[\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}+\frac{1}{z}\right)\right]=\frac{1}{16}\left(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\right)\)

Tương tự với \(\frac{1}{x+2y+z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{2}{y}+\frac{1}{z}\right)\)\(\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{1}{x}+\frac{1}{y}+\frac{2}{z}\right)\).

Suy ra \(\frac{1}{2x+y+z}+\frac{1}{x+2y+z}+\frac{1}{x+y+2z}\le\frac{1}{16}\left(\frac{4}{x}+\frac{4}{y}+\frac{4}{z}\right)=1\).

(Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)với \(a,b>0\), dấu \(=\)khi \(a=b\))

25 tháng 7 2017

Vì x > y nên 2 vế đều là số dương. Bình phương 2 vế được

\(x+y-2\sqrt{xy}< x-y\)

\(\Leftrightarrow2\sqrt{xy}-2y>0\)

\(\Leftrightarrow\sqrt{xy}-y>0\)

\(\Leftrightarrow\sqrt{y}.\left(\sqrt{x}-\sqrt{y}\right)>0\) (đúng)

Vậy \(\sqrt{x}-\sqrt{y}< \sqrt{x-y}\)

27 tháng 10 2019

\(x^3+y^3=\left(x+y\right)^3-3\left(xy\right)\left(x+y\right)=1-3xy\)

Có: \(xy\le\frac{\left(x+y\right)^2}{4}\)với mọi x, y

Chứng minh: \(xy\le\frac{\left(x+y\right)^2}{4}\Leftrightarrow x^2+y^2+2xy\ge4xy\Leftrightarrow\left(x-y\right)^2\ge0\)đúng với mọi x, y.

=> \(xy\le\frac{1}{4}\)=> \(-3xy\ge-\frac{3}{4}\)

=> \(x^3+y^3=\left(x+y\right)^3-3\left(xy\right)\left(x+y\right)=1-3xy\ge1-\frac{3}{4}=\frac{1}{4}\)

"=" xảy ra <=> (x -y)^2 =0 <=> x =y.