K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2022

T quen m đk

20 tháng 5 2020

Áp dụng định lí Py-ta-go vào tam giác ABH vuông tại H, ta có:

AH²+BH²=AB²

AH²=AB²−BH²

AH²=52−32

⇒AH²=16

⇒AH=4(cm)

Ta có:

BH+HC=BC

⇒HC=BC−BH

⇒HC=8−3

⇒HC=5(cm)

Áp dụng định lí Py-ta-go vào tam giác AHC vuông tại H, ta có:

AH²+HC²=AC²

42+52=AC²

⇒AC²=41

⇒AC=√41(cm)

Vậy HC = 5 cm, AC = √41 cm

#Tuyên#

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

b: Xét ΔAHC vuông tại H có \(\widehat{C}=45^0\)

nên ΔAHC vuông cân tại H

=>\(AH=HC=\dfrac{BC}{2}=\dfrac{5}{2}\sqrt{2}\left(cm\right)\)

a: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC và AH là phân giác của góc BAC

=>góc BAH=góc CAH

b: \(BH=\sqrt{5^2-4^2}=3\left(cm\right)\)

c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có

AH chung

góc DAH=góc EAH

Do đó: ΔADH=ΔAEH

=>AD=AE

=>ΔADE cân tại A

14 tháng 6 2017

Câu 1:
Xét tam giác ABH vuông tại H, ta có:
   AB2 = AH2 +  HB2 (định lý Py-ta-go)
   202  = AH2 + 162
   400  = AH2 + 256
   AH2 = 400 - 256
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   AC2 = 122  + 52
   AC2 = 144  + 25
   AC2 = 169
   AC  = \(\sqrt{169}\)= 13 (cm)

Vậy AH = 12 cm
       AC = 13 cm

Bài 2:
Xét tam giác AHC vuông tại H, ta có:
   AC2 = AH2 + HC2 (định lý Py-ta-go)
   152  = AH2 + 92
   225  = AH2 + 81
   AH2 = 225 - 81
   AH2 = 144
   AH  = \(\sqrt{144}\)= 12 (cm)

Xét tam giác AHB vuông tại, ta có:
   AB2 = AH2 + HB(định lý Py-ta-go)
   AB2 = 122  + 52
   AB2 = 144  + 25
   AB2 = 169
   AB  = \(\sqrt{169}\)= 13 (cm)

Vậy AB = 13 cm

17 tháng 9 2019

Câu này dễ

AH 12cm

AC13cm

AB13cm

b) Ta có: HB+HC=BC(H nằm giữa B và C)

nên BC=4+9=13(cm)

Xét ΔBAC có AH là đường cao ứng với cạnh CB(gt)

nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{6\cdot13}{2}=39\left(cm^2\right)\)

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow AH^2=4\cdot9=36\)

hay AH=6(cm)

Vậy: Độ dài đường cao là AH=6cm

 

6 tháng 2 2022

a.ta có trong tam giác cân ABC đường cao cũng là đường trung tuyến => HB = HC

b.áp dụng định lý pitago ta có:

\(AB^2=AH^2+HB^2\)

\(5^2=AH^2+\left(8:2\right)^2\)

\(AH=\sqrt{5^2-4^2}=3cm\)

c.Xét tam giác vuông BHD và tam giác vuông CHE, có:

BH = CH ( cmt )

góc B = góc C ( ABC cân )

Vậy tam giác vuông BHD = tam giác vuông CHE 

=> HD = HE 

=> HDE cân tại H

d.ta có AB = AD + DB

           AC = AE + EC

Mà BD = CE ( 2 cạnh tương ứng của 2 tam giác bằng nhau )

=> AD = AE 

=> ADE cân tại A
Mà A là đường cao cũng là đường trung trực trong tam giác cân ABC cũng là đường trung trực của tam giác cân ADE ( cmx )

Chúc bạn học tốt !!!!

4 tháng 4 2021

tự vẽ hình 

ta có <HBA+<BAH= 90\(^0\)(vì tam giác ABH vg tại H)

Có <BAH+ <HAC= 90\(^0\)(vì tam giác ABC vg tại A)

=> <HBA=<HAC 

Xét tam giác BAH và ACH

<BHA=<AHC\(\left(90^0\right)\)

<ABH=<HAC

=> Tam giác BAH đồng dạng với tam giác ACH

=> BH/AH=AH/CH=> AH^2= BH*CH=4*9=36 cm 

b, ta có BC=BH+CH=4+9=13 cm 

S(ABC) = AH*BC=36*13=468 cm\(^2\)

 

4 tháng 4 2021

cảm ơn bạn

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cmChứng minh ABC vuông tại A và tính độ dài đường cao AH;Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;Chứng minh: AEF và ABC đồng dạng.Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cmTính độ dài các đoạn thẳng: AB, AC, AH.Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE =...
Đọc tiếp

Giải giùm mình nhanh ạ , cần gấp , có thể ko cần vẽ hình cũng đc 

Bài 1: Cho ABC có AB = 5cm; AC = 12cm; BC = 13cm
Chứng minh ABC vuông tại A và tính độ dài đường cao AH;
Kẻ HEAB tại E, HF AC tại F. Chứng minh: AE.AB = AF.AC;
Chứng minh: AEF và ABC đồng dạng.
Bài 2: Cho (ABC vuông tại A, đường cao AH. Biết HB = 3,6cm ; HC = 6,4cm
Tính độ dài các đoạn thẳng: AB, AC, AH.
Kẻ HEAB ; HFAC. Chứng minh rằng: AB.AE = AC.AF.
Bài 3: Cho hình chữ nhật ABCD. Từ D hạ đường vuông góc với AC, cắt AC ở H. Biết rằng AB = 13cm; DH = 5cm. Tính độ dài BD.
Bài 4: Cho ABC vuông ở A có AB = 3cm, AC = 4cm, đường cao AH.
Tính BC, AH. b) Tính góc B, góc C.
Phân giác của góc A cắt BC tại E. Tính BE, CE.
Bài 5 Cho tam giác ABC vuông tại A, đường cao AH. Biết AH = 4, BH = 3. Tính tanB và số đo góc C (làm tròn đến phút ).
Bài 6: Cho tam giác ABC vuông tại A có B = 300, AB = 6cm
a) Giải tam giác vuông ABC.
b) Vẽ đường cao AH và trung tuyến AM của ABC. Tính diện tích AHM.
Bài 7: Cho tam giác ABC vuông tại A, đường cao AH = 6cm, HC = 8cm.
a/ Tính độ dài HB, BC, AB, AC
b/ Kẻ . Tính độ dài HD và diện tích tam giác AHD.
Bài 8: Cho tam giác ABC vuông tại A có AB = 10cm, 
a) Tính độ dài BC?
b) Kẻ tia phân giác BD của góc ABC (D AC). Tính AD?
(Kết quả về cạnh làm tròn đến chữ số thập phân thứ hai)
Bài 9: Trong tam giác ABC có AB = 12cm, B = 400, C = 300, đường cao AH. 
Hãy tính độ dài AH, HC?
Bài 10: Cho tam giác ABC vuông ở A ; AB = 3cm ; AC = 4cm.
a) Giải tam giác vuông ABC?
b) Phân giác của góc A cắt BC tại E. Tính BE, CE.
c) Từ E kẻ EM và EN lần lượt vuông góc với AB và AC. Hỏi tứ giác AMEN là hình gì ? Tính diện tích của tứ giác AMEN

3
9 tháng 5 2021

mình chịu thoiii

12 tháng 7

Gì nhiều vậy???

 

2 tháng 11 2021

a, \(\cos B=\cos60^0=\dfrac{AC}{BC}=\dfrac{1}{2}\Leftrightarrow AC=10\left(cm\right)\)

\(AB=\sqrt{BC^2-AC^2}=10\sqrt{3}\left(cm\right)\left(pytago\right)\)

\(b,\) Sửa: Tính AH,BH,CH 

Áp dụng HTL: \(\left\{{}\begin{matrix}BH=\dfrac{AB^2}{BC}=15\left(cm\right)\\CH=\dfrac{AC^2}{BC}=5\left(cm\right)\end{matrix}\right.\)\(AH=\dfrac{AB\cdot AC}{BC}=5\sqrt{3}\left(cm\right)\)

 

 

1 tháng 11 2022

nếu nó bắt tính AH, HB, HC thì mình áp dụng khác ạ?