cho a>0, b>0. Chứng tỏ rằng: (a+b)*(1/a + 1/b) =>4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì a, b >0 nên áp dụng bất đẳng thức Cô - si , ta có
\(a+b\ge2\sqrt{ab}\)(1)
Mad a,b >0 \(\Rightarrow\frac{1}{a},\frac{1}{b}\)cũng lớn hơn 0 , áp dụng Cô - si ta có
\(\frac{1}{a}+\frac{1}{b}\ge2\sqrt{\frac{1}{a}.\frac{1}{b}}=2\sqrt{\frac{1}{ab}}=\frac{2}{\sqrt{ab}}\)(2)
Từ (1) và (2) ta có :
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge2\sqrt{ab}.\frac{2}{\sqrt{ab}}\)=\(4\)
Vậy \(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\left(đpcm\right)\)
Cứ có bài toán nào đề bài cho là lớn hơn 0 thì cậu nghĩ ngay tới cô si nhé
áp dụng bất đẳng thức cô si ta có
a2+ b2 \(\ge\)2ab
\(\Rightarrow a^2+b^2+2ab\ge4ab\Rightarrow\frac{a^2+2ab+b^2}{ab}\ge\frac{4ab}{ab}\)\(\Rightarrow\frac{a^2+2ab+b^2}{ab}\ge4\)\(\Rightarrow\left(a+b\right)\left(\frac{a+b}{ab}\right)\ge4\)
\(\left(a+b\right)\left(\frac{1}{a}+\frac{1}{b}\right)\ge4\) ( ĐPCM)
2.
\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Tương tự.......................
1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)
Lại có: b - a < 0 ( a > b)
ab >0 ( a>0, b > 0)
\(\Rightarrow\dfrac{b-a}{ab}< 0\)
Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)
2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b
3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b
Với a>b:
a=b+m(m số tự nhiên bất kì.
b+m phần b bằng 1 cộng m phần b.
Mà m phần b lớn hơn 0 nên nó lớn hơn 1.
Với ngược lại chứng minh tương tự thôi.
Chúc em học tốt^^
Với a>b:
a=b+m(m số tự nhiên bất kì.
b+m phần b bằng 1 cộng m phần b.
Mà m phần b lớn hơn 0 nên nó lớn hơn 1.
Với ngược lại chứng minh tương tự thôi.
Chúc em học tốt^^
(a+b)(1/a+1/b)=1+a/b+b/a+1
vì a/b+b/a >= 2căn(a/b*b/a)
a/b+b/a >= 2
a/b+b/a +1+1 >= 2+1+1
(a+b)(1/a+1/b) >= 4