Cho tam giác ABC vuông tại A biết BC = 13, AC = 12. Đường phân giác trong của góc A cắt cạnh BC tại D. Tính AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: cắt AB tại D.
a) Sửa đề: ΔACD=ΔECD
Xét ΔACD vuông tại A và ΔECD vuông tại E có
CD chung
\(\widehat{ACD}=\widehat{ECD}\)(CD là tia phân giác của \(\widehat{ACE}\))
Do đó: ΔACD=ΔECD(Cạnh huyền-góc nhọn)
b) Ta có: ΔACD=ΔECD(cmt)
nên DA=DE(Hai cạnh tương ứng)
Xét ΔDAE có DA=DE(cmt)
nên ΔDAE cân tại D(Định nghĩa tam giác cân)
Bài làm
a) Xét tam ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau )
hay \(\widehat{ACB}+60^0=90^0\)
=> \(\widehat{ACB}=90^0-60^0=30^0\)
b) Xét tam giác ABE và tam giác DBE có:
\(\widehat{BAE}=\widehat{BDE}=90^0\)
Cạnh huyền: BE chung
Cạnh góc vuông: AB = BD ( gt )
=> Tam giác ABE = tam giác DBE ( cạnh huyền - cạnh góc vuông )
=> \(\widehat{ABE}=\widehat{DBE}\)( hai góc tương ứng )
=> BI là tia phân giác của góc BAC
Mà I thược BE
=> BE là tia phân giác của góc BAC
Gọi I là giao điểm BE và AD
Xét tam giác AIB và tam giác DIB có:
AB = BD ( gt )
\(\widehat{ABE}=\widehat{DBE}\)( cmt )
BI chung
=> Tam giác AIB = tam giác DIB ( c.g.c )
=> AI = ID (1)
=> \(\widehat{BIA}=\widehat{BID}\)
Ta có: \(\widehat{BIA}+\widehat{BID}=180^0\)( hai góc kề bù )
Hay \(\widehat{BIA}=\widehat{BID}=\frac{180^0}{2}=90^0\)
=> BI vuông góc với AD tại I (2)
Từ (1) và (2) => BI là đường trung trực của đoạn AD
Mà I thược BE
=> BE là đường trung trực của đoạn AD ( đpcm )
c) Vì tam giác ABE = tam giác DBE ( cmt )
=> AE = ED ( hai cạnh tương ứng )
Xét tam giác AEF và tam giác DEC có:
\(\widehat{EAF}=\widehat{EDC}=90^0\)
AE = ED ( cmt )
\(\widehat{AEF}=\widehat{DEF}\)( hai góc đối )
=> Tam giác AEF = tam giác DEC ( g.c.g )
=> AF = DC
Ta có: AF + AB = BF
DC + BD = BC
Mà AF = DC ( cmt )
AB = BD ( gt )
=> BF = BC
=> Tam giác BFC cân tại B
=> \(\widehat{BFC}=\widehat{BCF}=\frac{180^0-\widehat{FBC}}{2}\) (3)
Vì tam giác BAD cân tại B ( cmt )
=> \(\widehat{BAD}=\widehat{BDA}=\frac{180^0-\widehat{FBC}}{2}\) (4)
Từ (3) và (4) => \(\widehat{BAD}=\widehat{BFC}\)
Mà Hai góc này ở vị trí đồng vị
=> AD // FC
d) Xét tam giác ABC vuông tại A có:
\(\widehat{ACB}+\widehat{ABC}=90^0\)( hai góc phụ nhau ) (5)
Xét tam giác DEC vuông tại D có:
\(\widehat{DEC}+\widehat{ACB}=90^0\)( hai góc phụ nhau ) (6)
Từ (5) và (6) => \(\widehat{ABC}=\widehat{DEC}\)
Ta lại có:
\(\widehat{ABC}>\widehat{EBC}\)
=> AC > EC
Mà \(\widehat{EBC}=\frac{1}{2}\widehat{ABC}\)
=> EC = 1/2 AC.
=> E là trung điểm AC
Mà EC = EF ( do tam giác AEF = tam giác EDC )
=> EF = 1/2AC
=> AE = EC = EF
Và AE = ED ( cmt )
=> ED = EC
Mà EC = 1/2AC ( cmt )
=> ED = 1/2AC
=> 2ED = AC ( đpcm )
Mình chứng minh ra kiểu này cơ. không biết đề đúng hay sai!??
a: BC=15cm
b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
c: Ta có: ΔBAD=ΔBED
nên DA=DE
a) Áp dụng định lí Pi-ta-go vào tam giác ABC
\(BC^2=AB^2+AC^2=15^2+20^2=625\Rightarrow BC=20\left(cm\right)\)
Tam giác ABC có BD là đuognừ phân giác theo tính chất phân giác ta có:
\(\frac{AD}{DC}=\frac{AB}{BC}\) mà theo tính chất dãy tỉ số bằng nhau ta có: \(\frac{AD}{AD+DC}=\frac{AB}{AB+BC}\Leftrightarrow\frac{AD}{AC}=\frac{AB}{15+225}\Leftrightarrow\frac{AD}{20}=\frac{15}{40}\Rightarrow AD=\frac{20\times15}{40}=7,5\left(cm\right)\).
b) Xét Tam giácCHD và Tam giác CAB có
^H = ^A = 90 độ
^C chung
\(\Rightarrow\) Tam giác CHD đồng dạng với tam giácCAB
\(\Rightarrow\frac{HD}{AB}=\frac{CH}{CA}=\frac{CD}{CB}\Rightarrow CH.CB=CD.CA\).
c) Ta có: CD = AC - AD = 20 - 7,5 = 12,5(cm).
Từ tỉ số đồng dạng ở câu b ta có:
\(CH=\frac{CA.CD}{CB}=\frac{20.12,5}{25}=10\left(cm\right).\)
\(HD=\frac{AB.CH}{CA}=\frac{15.10}{20}=7,5\left(cm\right).\)
Vì tam giác HCD vuông tại H nên \(S_{CHD}=\frac{HC.HD}{2}=\frac{10.7,5}{2}=37,5\left(cm^2\right).\)
Lời giải:
Sử dụng công thức tính độ dài đường phân giác trong ta có:
\(AD=\frac{2AC.AB}{AB+AC}\cos \frac{A}{2}\)
Trong đó:
$AC=12$
$AB=\sqrt{BC^2-AC^2}=\sqrt{13^2-12^2}=5$
$\frac{\widehat{A}}{2}=45^0$
$\Rightarrow AD=\frac{60\sqrt{2}}{17}$ (đvdd)
Hình vẽ: