chứng tỏ rằng có một số tự nhiên mà bốn chữ số cuối cùng của nó là 2012 thì số đó chia hết cho 2013
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét dãy 2014 số 2012;20122012;...;20122012...2012(2014 bộ)
Vì có 2014 số mà khi chia cho 2013 chỉ có thể nhận 2013 số dư nên có 2 số trong dãy cùng số dư khi chia cho 2013
Giả sử 2 số đó là 20122012...2012(n bộ;0<n<2015) và 20122012...2012(m bộ;0<m<2015) với n>m
Khi đó 20122012...2012-20122012...2012 chia hết cho 2013
n m
<=>20122012...2012 00...0 chia hết cho 2013
n-m 4m
<=>20122012...2012*(10^(4m)) chia hết cho 2013
Mà (10^(4m);2013)=1
=>20122012...2012 chia hết cho 2013 (đpcm)
dễ bà cố nôi người ta luôn.255555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555ddos in my laohg losaho aiohf lafohw aljo
Nếu n=2k (k thuộc N) thì n+5=2k+5 chia hết cho 2
Nếu n=2k+1 (k thuộc N) thì n+4 =2k+5 chia hết cho 2
Vậy (n+4)(n+5) chia hết cho 2
Câu a
Nếu n=2k thì n+4 = 2k+4 chia hết cho 2 => (n+4)(n+5) chia hết cho 2
Nếu n=2k+1 thì n+5=2k+5+1=2k+6 chia hết cho 2=> (n+4)(n+5) chia hết cho hai
Vậy (n+4)(n+5) chia hết cho 2
Câu b
Ta có n+2012 và n+2013 là hai số tự nhiên liên tiếp
Gọi ƯCLN(n+2012; n+2013)=d
Vì ƯCLN(n+2012;n+2013)=d
=> n+2012 chia hết cho d, n+2013 chia hết cho d
Mà n+2013-n+2012=1=> d=1
Vậy n+2012 và n+2013 là 2 số nguyên tố cùng nhau