tính
a 1.2.3+2.3.4+....+48.49.50
b tìm x biết
4/11<x/20<5/11
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8 NHÁ BẠN
LÀM ƠN HÃY T CHO MK MK SẼ BIẾT ƠN MỌI NGƯỜI NHÌU NHÌU NHÌU NHÌU NHÌU LẮM
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{8.9.10}\)
\(A=\frac{1}{2}\left(\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+...+\frac{10-8}{8.9.10}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right)=\frac{11}{45}\).
Phương trình tương đương với:
\(\frac{11}{45}x=\frac{22}{45}\Leftrightarrow x=2\).
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\cdot x=\frac{22}{45}\)
\(\Rightarrow1-\frac{1}{10}.x=\frac{22}{45}\)
\(\Rightarrow\frac{9}{10}.x=\frac{22}{45}\)
\(\Rightarrow x=\frac{22}{45}:\frac{9}{10}\)
\(\Rightarrow x=\frac{22}{45}.\frac{10}{9}=\frac{22.10}{45.9}=\frac{44}{81}\)
=>x=\(\frac{44}{81}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{8.9}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{9.10}\right).x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{90}\right).x=\frac{23}{45}\)
\(\Leftrightarrow\frac{1}{2}.\frac{44}{90}.x=\frac{23}{45}\Rightarrow\frac{11}{45}.x=\frac{23}{45}\Rightarrow x=\frac{23}{45}:\frac{11}{45}=\frac{23}{11}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+....+\frac{1}{x\left(x+1\right)\left(x+2\right)}=\frac{1998}{1999}\)
\(\Leftrightarrow\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}\right)=\frac{1998}{1999}\)
\(\Leftrightarrow\frac{1}{2}\cdot\left(\frac{1}{1.2}-\frac{1}{\left(x+1\right)\left(x+2\right)}\right)=\frac{1998}{1999}\)
\(\Leftrightarrow\frac{1}{1.2}-\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1998}{1999}\div\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{1.2}-\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{3996}{1999}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{1}{1.2}-\frac{3996}{1999}\)
\(\Leftrightarrow\frac{1}{\left(x+1\right)\left(x+2\right)}=\frac{-5993}{3998}\)
Như kiểu đề sai hay sao í