chứng minh rằng 3/4+8/9+15/16+...+2499/2500 không phải số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn chứng minh 3/4+8/9+15/16+...+2499/2500 không phải số tự nhiên thì chứng minh nó nhỏ hơn 1
Ta có: \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{2499}{2500}=\frac{1.3}{2^2}.\frac{2.4}{3^2}....\frac{49.51}{50^2}\)
\(=\frac{1.2....49}{2.3...50}.\frac{3.4...51}{2.3...50}=\frac{1}{50}.\frac{51}{2}=\frac{51}{100}<1\)
\(\RightarrowĐPCM\)
\(A=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+\frac{1}{2500}\)
\(A=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+\frac{1}{50^2}=\left(1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)\)(từ 2 đến 50 có 49 số nên có 49 số 1)
\(A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)<49\) (1)
Nhận xét: \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3};\frac{1}{4^2}<\frac{1}{3.4};...;\frac{1}{50^2}<\frac{1}{49.50}\)
=> \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}<1\)=> \(-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>-1\)
=> \(A=49-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{50^2}\right)>49-1=48\)(2)
từ (1)(2) => 48 < A < 49 => A không là số tự nhiên
B = 3/4 + 8/9 + 15/16 + .... + 2499/2500
B = (1 - 1/4) + (1 - 1/9) + (1 - 1/16) + ... + (1 - 1/2500)
B = (1 - 1/22) + (1 - 1/32) + (1 - 1/42) + ... + (1 - 1/502)
B = (1 + 1 + 1 + ... + 1) - (1/22 + 1/32 + 1/42 + ...+ 1/502)
49 số 1
B = 49 - (1/22 + 1/32 + 1/42 + ... + 1/502)
=> B < 49 (1)
B > 49 - (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/49×50)
B > 49 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50)
B > 49 - (1 - 1/50)
B > 49 - 1 + 1/50
B > 48 + 1/50 > 48 (2)
Từ (1) và (2) => 48 < B < 49
=> B không phải là số nguyên ( đpcm)
B = 3/4 + 8/9+ 15/16 + ... + 2499/2500
B = (1 - 1/4) + (1 - 1/9) + (1 - 1/16) + ... + (1 - 1/2500)
B = (1 - 1/22) + (1 - 1/32) + (1 - 1/42) + ... + (1 - 1/502)
B = (1 + 1 + 1 + ... + 1) - (1/22 + 1/32 + 1/42 + .... + 1/502)
49 số 1
=> B = 49 - (1/22 + 1/32 + 1/42 + ... + 1/502)
=> B < 49 (1)
B > 49 - (1/1×2 + 1/2×3 + 1/3×4 + ... + 1/49×50)
B > 49 - (1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50)
B > 49 - (1 - 1/50)
B > 49 - 1 + 1/50
B > 48 + 1/50 > 48 (2)
Từ (1) và (2) => 48 < M < 49
=> M không phải số nguyên ( đpcm)