2018 X 4 =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dạng bài tập chứng minh dạng tổng quát rồi suy ra đpcm
Bài làm :
Xét dạng tổng quát : Cho \(\hept{\begin{cases}a+b=x+y\\a^4+b^4=x^4+y^4\end{cases}}\)
\(a^k+b^k=x^k+y^k\)(1)
+) Xét \(k=1\)ta có (1) hiển nhiên đúng
+) Xét \(k=2\)ta cũng thu được (1) đúng
Giả sử (1) đúng với \(k=n\)
Ta cần chứng minh (1) đúng với \(k=n+1\)
Khi đó : \(\left(1\right)\Leftrightarrow a^{n+1}+b^{n+1}=x^{n+1}+y^{n+1}\)
Xét \(a^{n+1}+b^{n+1}=\left(a^n+b^n\right)\left(a+b\right)-a^nb-ab^n\)
\(=\left(a^n+b^n\right)\left(a+b\right)-ab\left(a^{n-1}+b^{n-1}\right)\)
\(=\left(x^n+y^n\right)\left(x+y\right)-ab\left(x^{n-1}+y^{n-1}\right)\)(*)
Ta có \(x^2+y^2=a^2+b^2\Leftrightarrow\left(x+y\right)^2-2xy=\left(a+b\right)^2-2ab\)
\(\Leftrightarrow-2xy=-2ab\Leftrightarrow xy=ab\)
Khi đó : (*)\(\Leftrightarrow\left(x^n+y^n\right)\left(x+y\right)-xy\left(x^{n-1}+y^{n-1}\right)=x^{n+1}+y^{n+1}\)
Ta có đpcm
Xem thêm : Câu hỏi của Nguyễn Thu Huyền - Toán lớp 8 | Học trực tuyến
Ta có : A =\(\frac{2017}{2018}\)x \(\frac{7}{8}\)+ \(\frac{2017}{2018}\)x \(\frac{3}{8}\)- \(\frac{2017}{2018}\)x \(\frac{1}{4}\)
= \(\frac{2017}{2018}\) x ( \(\frac{7}{8}+\frac{3}{8}-\frac{1}{4}\))
= \(\frac{2017}{2018}\)x 1
=\(\frac{2017}{2018}\)
Vậy A= : \(\frac{2017}{2018}\)
Bài giải
\(A=\frac{2017}{2018}\text{ x }\frac{7}{8}+\frac{2017}{2018}\text{ x }\frac{3}{8}-\frac{2017}{2018}\text{ x }\frac{1}{4}\)
\(A=\frac{2017}{2018}\text{ x }\frac{1}{4}\left(\frac{7}{2}+\frac{3}{2}-1\right)=\frac{2017}{2018}\text{ x }\frac{1}{4}\text{ x }4==\frac{2017}{2018}\text{ x }1=\frac{2017}{2018}\)
Do x=2017 nên x+1=2018
Với x+1=2018 thì y trở thành
y= x5-(x+1).x4+(x+1).x3-(x+1).x2+(x+1).x-1
= x5- x5-x4+x4+x3-x3-x2+x-1=x-1
Với x=2017, giá trị biểu thức f(x) là
f(2017)=2017-1=2016
Vậy ...
\(\left(\frac{5}{4}-\frac{2}{5}\right)\times\frac{2017}{2018}+\left(\frac{3}{4}-\frac{3}{5}\right)\times\frac{2017}{2018}\)
\(=\left[\left(\frac{5}{4}-\frac{2}{5}\right)+\left(\frac{3}{4}-\frac{3}{5}\right)\right]\times\frac{2017}{2018}\)
\(=\left[\left(\frac{5}{4}+\frac{3}{4}\right)-\left(\frac{2}{5}+\frac{3}{5}\right)\right]\times\frac{2017}{2018}\)
\(=\left[2-1\right]\times\frac{2017}{2018}\)
\(=1\times\frac{2017}{2018}\)
\(=\frac{2017}{2018}\)
\(\left(\frac{5}{4}-\frac{2}{5}\right)\cdot\frac{2017}{2018}-\left(\frac{3}{4}-\frac{3}{5}\right)\cdot\frac{2017}{2018}\)
\(=\frac{2017}{2018}\cdot\left(\frac{5}{4}-\frac{2}{5}+\frac{3}{4}-\frac{3}{5}\right)\)
\(=\frac{2017}{2018}.\left(2+-1\right)\)
\(=\frac{2017}{2018}.1=\frac{2017}{2018}\)
Ad C-S
\(\dfrac{x^4}{a}+\dfrac{y^4}{b}=\dfrac{\left(x^2\right)^2}{a}+\dfrac{\left(x^2\right)^2}{b}\ge\dfrac{\left(x^2+y^2\right)^2}{a+b}=\dfrac{1}{a+b}\)
2018 x 4 = 8072
HT
=8072 nka bnaj