\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\left(n\in N\right)\)
\(2S=2+4+10+28+...+\left(3^{n-1}+1\right)=S_1\)
\(2S=\left[1+1+1+...+n\right]+\left[1+3+9+...+3^{n-1}\right]\)
\(S_1=1+1+1+...+n=n\)
\(S_2=3+9+...+3^n\)
\(3S_2-S_2=2S_2=3^n-1\Rightarrow S_2=\frac{3^n-1}{2}\)
\(S=\frac{S_1+S_2}{2}=\frac{n+\frac{3^n-1}{2}}{2}=\frac{3^n+2n-1}{4}\)
\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\)
\(=\frac{3^0+1}{2}+\frac{3^1+1}{2}+\frac{3^2+1}{2}+\frac{3^3+1}{2}+...+\frac{3^{n-1}+1}{2}\)
\(=\frac{\left(3^0+3^1+3^2+3^3+...+3^{n-1}\right)+\left(1+1+1+1+...+1\right)}{2}\)(tổng thứ 2 trên tử có n chữ số 1)
Đặt \(K=3^0+3^1+3^2+3^3+...+3^{n-1}\)
\(\Rightarrow3K=3^1+3^2+3^3+3^4+...+3^n\)
\(\Rightarrow3K-K=3^1+3^2+3^3+3^4+...+3^n\)\(-3^0-3^1-3^2-3^3-...-3^{n-1}\)
\(\Rightarrow2K=3^n-1\Rightarrow K=\frac{3^n-1}{2}\)
\(\Rightarrow S=\frac{\frac{3^n-1}{2}+n}{2}=\frac{3^n+2n-1}{4}\)
Vậy \(S=\frac{3^n+2n-1}{4}\)
nhìn cái cuối là biết quy luật đó bạn :))
\(S=\frac{3^{1-1}+1}{2}+\frac{3^{2-1}+1}{2}+\frac{3^{3-1}+1}{2}+...+\frac{3^{n-1}+1}{2}\)
\(S=\frac{\left(3^0+3^1+....+3^{n-1}\right)+\left(1+1+1+...+1\right)}{2}\left(\text{ có n c/s 1}\right)\)
\(S=\frac{\frac{\left(3^n-1\right)}{2}+n}{2}=3^n-1+\frac{n}{2}\)
chỗ 30+31+...+3n-1 bn tự tính :))
S=\(\frac{3^0+1}{2}+\frac{3^1+1}{2}+...+\frac{3^{n-1}+1}{2}\)
S=\(\frac{\left(3^0+1\right)+\left(3^1+1\right)+...+\left(3^{n-1}+1\right)}{2}\)
2S=(30+31+...+3n-1)+(1+1+...+1) (n số hạng 1)
2S=\(\frac{3^n-1}{2}\)+n
2S=\(\frac{3^n-1}{4}+\frac{n}{2}\)
(chỗ 30+31+...+3n-1 mình tính theo công thức nên tắt)
\(S=1+2+5+14+...+\frac{3^{n-1}+1}{2}\)
\(\Rightarrow3S=3+6+15+42+....+\frac{3^{n+3}}{2}\)
\(\Rightarrow3S-S=\left(3+6+15+42+....\frac{3^{n+3}}{2}\right)-\left(1+2+5+14+....+\frac{3^{n-1}+1}{2}\right)\)
\(\Rightarrow2S=\left(1+3+3^2+....+3^{n-1}\right)+\left(n-1\right)\)
Đặt \(A=1+3+3^2+...+3^{n-1}\)
\(\Rightarrow3A=3+3^2+3^3+...+3^n\)
\(\Rightarrow3A-A=\left(3+3^2+3^3+...+3^n\right)-\left(1+3+3^2+....+3^{n-1}\right)\)
\(\Rightarrow2A=3^n-1\Rightarrow A=\frac{3^n-1}{2}\)
Khi đó \(S=\frac{3^n-1}{4}+\frac{n-1}{2}\)
Tại sao từ 3S - S lại ra đc 2S=( 1+3+3+...+\(3^{n-1}\))+ ( n-1)