K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔAMB có 

MD là đường phân giác ứng với cạnh AB(gt)

nên \(\dfrac{MB}{MA}=\dfrac{BD}{AD}\)(Định lí Tia phân giác)

\(\dfrac{MB}{4}=\dfrac{1.5}{3}=\dfrac{1}{2}\)

hay MB=2(cm)

Vậy: MB=2cm

a: BC=2MB=90cm

Xét ΔAMB có MD là phân giác

nên AD/AM=DB/BM

=>AD/30=DB/45

=>AD/2=DB/3

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{2}=\dfrac{DB}{3}=\dfrac{AD+DB}{2+3}=\dfrac{50}{5}=10\)

Do đó: AD=20(cm); DB=30(cm)

b: Xét ΔAMB có MD là phân giác

nên AD/DB=AM/MB=AM/MC(1)

Xét ΔAMC có ME là phân giác

nên AE/EC=AM/MC(2)

Từ (1) và (2) suy ra AD/DB=AE/EC

hay DE//BC

a: BC=2*MB=90cm

Xét ΔMAB có MD là phân giác

nên AD/MA=BD/BM

=>AD/6=BM/9=50/15=10/3

=>AD=10/3*6=20cm; BM=10/3*9=30cm

b: Xét ΔMAC có ME là phân giác

nên AE/EC=AM/MC

=>AE/EC=AD/DB

=>ED//BC

a: AD/BD=AM/MB=6/5

b: AE/EC=AM/MC=6/5

=>AD/BD=AE/EC

=>DE//BC

c: Để DE là đường trung bình thì D là trung điểm của AB, E là trung điểm của AC
Xét ΔAMB có

MD vừa la trung tuyến, vừa là phân giác

=>ΔMAB cân tại M

=>MA=MB=MC=1/2BC

=>ΔABC vuông tại A

12 tháng 3 2023

Bạn ơi mình thắc mắc phần c MD là đường trung tuyến vậy

 

a: AD/BD=AM/MB=6/5

b: AE/EC=AM/MC=6/5

=>AD/BD=AE/EC

=>DE//BC

c: Để DE là đường trung bình thì D là trung điểm của AB, E là trung điểm của AC
Xét ΔAMB có

MD vừa la trung tuyến, vừa là phân giác

=>ΔMAB cân tại M

=>MA=MB=MC=1/2BC

=>ΔABC vuông tại A

12 tháng 12 2018

22 tháng 3 2021

a) \(BM=\dfrac{1}{2}BC=\dfrac{1}{2}.10=5\left(cm\right)\)

Tam giác ABM có MD là p/giác

\(\Rightarrow\dfrac{AD}{BD}=\dfrac{AM}{BM}=\dfrac{6}{5}\)

b) Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{MC}{AM}=\dfrac{EC}{AE}\)

Mà: MC = BM (GT)

\(\Rightarrow\dfrac{BM}{AM}=\dfrac{EC}{AE}\)

c) Có: \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\left(cmt\right)\) (1)

Tam giác AMC có ME là p/giác

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{MC}\)

Mà: BM = MC (GT)

\(\Rightarrow\dfrac{AE}{EC}=\dfrac{AM}{BM}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\dfrac{AD}{BD}=\dfrac{AE}{EC}\)

=> DE // BC

a) Ta có: M là trung điểm của BC(gt)

nên \(MB=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)

Xét ΔAMB có MD là đường phân giác ứng với cạnh AB(Gt)

nên \(\dfrac{AD}{BD}=\dfrac{AM}{BM}\)(Tính chất đường phân giác của tam giác)

hay \(\dfrac{AD}{BD}=\dfrac{6}{5}\)

a: Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=AM/MC

Xét ΔMAC ó ME là phân giác

nên AE/EC=AM/MC=AD/DB

=>ED//BC

b: Xét ΔMAB có MD là phân giác

nên AD/DB=AM/MB=5/3

=>AD/AB=5/8

Xét ΔABC có DE//BC

nên DE/BC=AD/AB

=>DE/6=5/8

=>DE=3,75cm

AD/DB=AM/MB

AE/EC=AM/MC

mà MB=MC

nên AD/DB=AE/EC

=>DE//BC

Để DE là đừog trung bình của ΔABC thì AD/DB=AE/EC=1

=>AM/MB=AM/MC=1

=>ΔABC vuông tại A