Cho tam giac ABC nhon (ab<ac) noi tiep duong tron (O;R). Cac duong cao AD, BE, CF cat tai H
a) chung minh OA vuong goc voi EF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có :ac^2=hc^2+ha^2(định lí pitago)
\(\Rightarrow\)AH^2=AC^2-HC^2=4^2-2^2=12
\(\Rightarrow\)AH=\(\sqrt{12\approx3}\)
ĐỘ dài bc là:3+2=5
chu vi là:4+5+5\(\approx\)14
+Cm tứ giác BEDC nội tiếp:
-Xét tứ giác BEDC, ta có:
góc BEC= góc BDC
góc BEC và góc BDC cùng nhìn cạnh BC( cùng nhìn cạnh dưới một góc không đổi )
---> BEDC là tứ giác nội tiếp
+Cm góc EBC= góc ECD:
-Do tứ giác BEDC là tứ giác nội tiếp
mà góc EBD và góc ECD cùng nhìn cạnh ED
---> góc EBD= góc ECD(đpcm)
Chúc bạn học tốt nhé
xét tam giác ABC nhọn nội tiếp (O;r) ta có BD là đường cao(giả thiết)
=> góc BDC =90 độ
lại có CE là đường cao của tam giác ABC(giả thiết)=>góc CEB=90 độ
=>góc BDC+góc CEB=90+90=180 độ
mà 2 góc này ở vị trí đối nhau=> tứ giác BEDC nội tiếp
=> góc EBD=Góc ECD (cùng chắn cung ED)
Mk chỉnh lại đề nhé: trên cạnh AB và AC lấy điểm D và E sao cho: AD = 4cm; AE = 5cm
BÀI LÀM
Ta có: \(\frac{AD}{AB}=\frac{4}{12}=\frac{1}{3}\) \(\frac{AE}{AC}=\frac{5}{15}=\frac{1}{3}\)
suy ra: \(\frac{AD}{AB}=\frac{AE}{AC}\), áp dụng định lý Ta-lét đảo \(\Rightarrow\)\(\frac{DE}{BC}\)
Xét \(\Delta ADE\)và \(\Delta ABC\) có:
\(\frac{AD}{AB}=\frac{AE}{AC}\)
\(\widehat{BAC}\) CHUNG
suy ra: \(\Delta ADE~\Delta ABC\) (C.G.C)
Bạn kẻ thêm 2 đường cao bất kì của tam giác rồi áp dụng tỉ số lượng giác là xong rồi
Hình vẽ:
Giải:
Xét tam giác ABH và tam giác DBH, ta có:
\(\widehat{AHB}=\widehat{DHB}=90^0\)
\(HA=HD\left(gt\right)\)
HB là cạnh chung
\(\Rightarrow\Delta ABH=\Delta DBH\) (Hai cạnh góc vuông)
Lại xét tam giác ACH và tam giác DCH, ta có:
\(\widehat{AHC}=\widehat{DHC}=90^0\)
\(HA=HD\left(gt\right)\)
HC là cạnh chung
\(\Rightarrow\Delta ACH=\Delta DCH\) (Hai cạnh góc vuông)
Chúc bạn học tốt!
Hình thì bạn tự vẽ nhá
Cách làm: Gọi K là giao điểm của AO và EF (K thuộc EF)
từ A vẽ tiếp tuyến xAy của (O;R)
Ta có: góc yAC= góc ABC (vĩ cùng chắc cung AC) (1)
Tứ giác EFBC nội tiếp (đỉnh E,F cùng nhìn cạnh BC dưới 1 góc cùng bằng 90 độ)
==>góc FEB=góc FCB (2)
Mà :góc FCB+góc FBC=90 độ và góc FEA+góc FEB=90 độ (3)
Từ (2) và (3)
===> góc FEA=góc FBC hay góc FEA=góc ABC (4)
Từ (1) và (4)
==>góc yAC=góc FEA
vì 2 góc này nằm ở vị trí đồng vị nên xy song song với EF (5)
Lại có: AK vuông góc xy (vì xy là tiếp tuyến) (6)
từ (5) và (6)====> AK vuông góc với EF
hay AO vuông góc với EF
Mệt quá, đánh máy mỏi cả tay