Cho đa thức P(x)=\(x^3-a^2x+2016b\)với a,b,c là số nguyên và a không chia hết cho 3 .Chứng minh P(x) chia hết cho 3 với mọi x nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x)=x^3-a^2.x+2016.b
Do 2016b chia hết cho 3 với mọi số nguyên b,ta chỉ cần xét x^3-a^2.x
có:x^3-a^2.x=x(x^2-a^2)=x(x+a)(x-a)
+nếu x chia hết cho 3=>P(x) chia hết cho 3
+nếu x và a chia 3 có cùng số dư=>(x-a)chia hết cho 3=>p(x) chia hết cho 3
+nếu x và a có số dư khác nhau khi chia hết cho 3(1 và 2)=>(x+a) chia hết cho 3=>P(x) chia hết cho 3
=>ĐPCM
Ta có f(0)=c chia hết cho 3
f(1)=a+b+c chia hết cho 3, mà c chia hết cho 3=> a+b chia hết cho 3.
f(-1)=a-b+c chia hết cho 3, c chia hết cho 3 => a-b chia hết cho 3.
Vì a,b,c nguyên nên a+b+a-b=2a chia hết cho 3. Do 2 và 3 nguyên tố cùng nhau => a phải chia hết cho 3.
a,c chia hết cho 3, a+b+c chia hết cho 3=> b chia hết cho 3
xét x=o nên f(x) = c nên c chia hết cho 3
xét x=1 suy ra f(x) = a+b+c vì c chia hết cho 3 nên a+b chi hết cho 3 (1)
xét x =-1 suy ra f(x)=a-b+c chia hết cho 3 tương tự suy ra a-b chia hết cho 3 (2)
từ 1 và 2 suy ra a+b+a-b chia hết cho 3 nên 2a chia hết cho 3 mà (2,3)=1 nên a chia hết cho 3 nên b chia hết 3
f(x) chia hết cho 3 với mọi x
=> f(0) chia hết cho 3 => C chia hết cho 3
f(1) ; f(-1) chia hết cho 3
=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3
=> f(1) + f(-1) chia hết cho 3 và f(1) - f(-1) chia hết cho 3
f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3
f(1) - f(-1) chia hết cho 3 => 2B chia hết cho 3 => B chia hết cho 3
Vậy.......................
f(x) chia hết cho 3 với mọi x
=> f(0) chia hết cho 3 => C chia hết cho 3
f(1) ; f(-1) chia hết cho 3
=> f(1) = A+B +C chia hết cho 3 và f(-1) = A - B + C chia hết cho 3
=> f(1) + f(-1) chia hết cho 3 và f(1) - f(-1) chia hết cho 3
f(1) + f(-1) chia hết cho 3 => 2A + 2C chia hết cho 3 => A + C chia hết cho 3 mà C chia hết cho 3 => A chia hết cho 3
f(1) - f(-1) chia hết cho 3 => 2B chia hết cho 3 => B chia hết cho 3
Vậy.......................
Ta có : \(f\left(x\right)⋮3\) với \(\forall x\in Z\)
\(\Rightarrow f\left(0\right)=a.0^2+b.0+c=0+0+c=c⋮3\)
\(Do\) \(f\left(x\right)⋮3\) với \(\forall x\in Z\)
\(\Rightarrow f\left(1\right)=a.1^2+b.1+c=a+b+c⋮3\left(1\right)\)
\(f\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c⋮3\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\left(a+b+c\right)-\left(a-b+c\right)=a+b+c-a+b-c=2b⋮3\)
Do 2 ko chia hết cho 3 \(\Rightarrow\) Để \(2b⋮3\) thì \(b⋮3\)
Ta lại có : \(a+b+c⋮3\)
mà \(b⋮3\) ; \(c⋮3\)
\(\Rightarrow\) Để tổng trên chia hết cho 3 thì a \(⋮3\)
Vậy a,b,c \(⋮3\)