K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

A=1+2+3+4+5+...+99+100

A=(1+100).100:2=101.50=5050

B=1/2+1/6+1/12+1/20+1/30+...+1/9900

B=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+....+1/99.100

B=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+...+1/99-1/100

B=1-1/100=99/100

25 tháng 5 2016

A = 100 x 101 : 2 = 5050

\(B=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.........+\frac{1}{99.100}\)

    \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)

      \(=1-\frac{1}{100}\)

        \(=\frac{99}{100}\)

20 tháng 12 2015

tham khảo câu hỏi tương tự

29 tháng 11 2015

Dạng chuẩn:

\(\frac{a^2}{a^2-a.100+5000}\)

tìm cách rút gọn ik

29 tháng 11 2015

ai biết đăng ảnh lên olm dạy mình với

mình ko biết 

17 tháng 2 2016

6a63f6246b600c3375b4bf7a194c510fd8f9a1b7.jpg

6a63f6246b600c33759fbf7a194c510fd8f9a19a.jpg

b3fb43166d224f4ac10913a10af790529922d1f4.jpg

Hơi khó nhìn nha

17 tháng 2 2016

mk nghĩ thế này: xét k E N* ta có:

(100-k)2 - (100-k).100+5000 

= 1002 - 2.100.k +k2 - 1002 + 100k+ 5000

= k2 - 100k + 5000

lần lượt thay k = 1;2;3;...;99 ta có

12 - 100+ 5000 = 992 - 9900+ 5000

22 - 200+ 5000 = 982 - 9800+ 500

...

992 - 9900+ 5000 = 12 - 100 + 5000

ta có: 2A = \(\frac{1^2+99^2}{1^2-100+5000}+\frac{2^2+98^2}{2^2-200+5000}+...+\frac{99^2+1^2}{99^2-9900+5000}\)

mặt khác k2 + (100-k)2 = k3 + 1002 - 2.100k+ k2 = 2(k2 - 100k + 5000)

do đó \(\frac{k^2+\left(100-k\right)^2}{k^2-100k+5000}=2\)

=> 2A = 2+2+2+...+2 ( có 99 số hạng là 2)

do đó A= \(\frac{2.99}{2}=99\)

duyệt đi

16 tháng 8 2017

Với n thuộc N ta luôn có :

\(\frac{\sqrt{n}-\sqrt{n+1}}{\sqrt{n\left(n+1\right)}}=\frac{\sqrt{n}}{\sqrt{n\left(n+1\right)}}-\frac{\sqrt{n+1}}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n+1}}-\frac{1}{\sqrt{n}}\)

Áp dụng ta được 

\(\frac{1-\sqrt{2}}{\sqrt{2}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{6}}+\frac{\sqrt{3}-\sqrt{4}}{\sqrt{12}}+....+\frac{\sqrt{99}-\sqrt{100}}{\sqrt{9900}}\)

\(\frac{\sqrt{1}-\sqrt{2}}{\sqrt{1.2}}+\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2.3}}+\frac{\sqrt{3}-\sqrt{4}}{\sqrt{3.4}}+....+\frac{\sqrt{99}-\sqrt{100}}{\sqrt{99.100}}\)

\(\frac{1}{\sqrt{2}}-1+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{4}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{100}}-\frac{1}{\sqrt{99}}\)

\(=\frac{1}{\sqrt{100}}-1=\frac{1}{10}-1=-\frac{9}{10}\)

11 tháng 11 2017

Ta thấy đc quy luật:

\(\frac{2^2-1^2}{2^2}=\frac{2+1}{2+2}=\frac{3}{4}\)

\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}=\frac{6+2}{6+3}=\frac{8}{9}\)

\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}+\frac{4^2-3^2}{12^2}=\frac{12+3}{12+4}=\frac{15}{16}\)

Nên:

\(\frac{2^2-1^2}{2^2}+\frac{3^2-2^2}{6^2}+\frac{4^2-3^2}{12^2}+...+\frac{100^2-99^2}{9900^2}=\frac{9900+99}{9900+100}=\frac{9999}{10000}\)

Hay A<1(đpcm)