K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 3 2021

Chúc bạn học tốt 🙆‍♀️❤

undefined

bạn nên sử dụng dấu "=" thay vì dấu "\(\Leftrightarrow\)"

AH
Akai Haruma
Giáo viên
13 tháng 11 2023

Yêu cầu đề là gì vậy bạn?

13 tháng 10 2019

(2x-1)*(y-1)=10

suy ra 2x-1=10/(y-1)

suy ra (y-1) thuộc ước của 10.ta có bảng sau:

y-1

1

-1

2

-2

5

-5

10

-10

y

2

0

3

-1

6

-4

11

-9

x

3

-4,5

13/6

-2

1/5

-0,5

1

0

Kết quả

Nhận

Loại

Loại

Nhận

Loại

Loại

Nhận

nhận

vậy...........................

AH
Akai Haruma
Giáo viên
6 tháng 1 2024

Lời giải:
a. $5x^2-10xy=5x(x-2y)$

b. $3x(x-y)-6(x-y)=(x-y)(3x-6)=3(x-y)(x-2)$
c. $2x(x-y)-4y(y-x)=2x(x-y)+4y(x-y)=(x-y)(2x+4y)=2(x-y)(x+2y)$

d. $9x^2-9y^2=9(x^2-y^2)=9(x-y)(x+y)$

e. $x^2-xy-x+y=(x^2-xy)-(x-y)=x(x-y)-(x-y)=(x-y)(x-1)$

f. $xy-xz-y+z=(xy-y)-(xz-z)=y(x-1)-z(x-1)=(x-1)(y-z)$

27 tháng 10 2021

b: \(C=xy\left(x^3+2\right)-y\left(xy^3+2x\right)\)

\(=x^4y+2xy-xy^4-2xy\)

\(=xy\left(x^3-y^3\right)\)

\(=xy\left(x-y\right)\left(x^2+xy+y^2\right)⋮x^2+xy+y^2\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1 2024

\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)

Chọn B.

13 tháng 9 2023

1.

\(a,\left(-xy\right)\left(-2x^2y+3xy-7x\right)\)

\(=2x^3y^2-3x^2y^2+7x^2y\)

\(b,\left(\dfrac{1}{6}x^2y^2\right)\left(-0,3x^2y-0,4xy+1\right)\)

\(=-\dfrac{1}{20}x^4y^3-\dfrac{1}{15}x^3y^3+\dfrac{1}{6}x^2y^2\)

\(c,\left(x+y\right)\left(x^2+2xy+y^2\right)\)

\(=\left(x+y\right)^3\)

\(=x^3+3x^2y+3xy^2+y^3\)

\(d,\left(x-y\right)\left(x^2-2xy+y^2\right)\)

\(=\left(x-y\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3\)

2.

\(a,\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

\(b,\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3+y^3\)

\(c,\left(4x-1\right)\left(6y+1\right)-3x\left(8y+\dfrac{4}{3}\right)\)

\(=24xy+4x-6y-1-24xy-4x\)

\(=\left(24xy-24xy\right)+\left(4x-4x\right)-6y-1\)

\(=-6y-1\)

#Toru

31 tháng 12 2015

a,Ta có

xy-3x-y=0

<=>x(y-3)-(y-3)=3

<=>(x-1)(y-3)=3

x-113-1-3
y-331-3-1
x240-2
y4620

b

x+y+xy=3

<=>(x+1)(y+1)=4

Vì x,y thuộc Z nên ta có bảng sau

x-114-1-42-2
y-141-4-12-2
x250-33-1
y52-303-1

c,

x+6=y(x-1)

<=>x+6-xy+y=0

<=>x(1-y)-(1-y)+7=0

<=>(x-1)(1-y)=-7

<=>(x-1)(y-1)=7

Đến đây ta làm như trên

Nếu thấy bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.