CHỨNG MINH RẰNG:
\(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{49\cdot50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
1/1.2 + 1/3.4 + 1/5.6 + ... + 1/49.50
= 1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + ... + 1/49 - 1/50
= (1 + 1/3 + 1/5 + .... + 1/49) - (1/2 + 1/4 + 1/6 + .... + 1/50)
= (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - 2.(1/2 + 1/4 + 1/6 + ... + 1/50)
= (1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + ... + 1/49 + 1/50) - (1 + 1/2 + 1/3 + ... + 1/25)
= 1/26 + 1/27 + 1/28 + ... + 1/50
=> đpcm
Ta có
\(\frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{2-1}{1.2}+\frac{3-2}{3.4}+...+\frac{50-49}{49.50}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{50}{49.50}-\frac{49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(1-\frac{1}{50}=\frac{49}{50}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.......+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+........+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+.......+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+........+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+.......+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+......+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+........+\frac{1}{50}\left(đpcm\right)\)
Ta thấy:1/1.2 =1−1/2 ,1/2.3 =1/2 −1/3 ,...,1/49.50 =1/49 −1/50
=>A=1/1.2 +1/2.3 +1/3.4 +...+1/49.50
=>A=1−1/2 +1/2 −1/3 +1/3 −1/4 +...+1/49 −1/50
=>A=1−1/50
=>A=49/50
Bài này mình chắc 100%, 1 đúng nha vì ghi cực khổ lắm:
1) Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}...+\frac{50-49}{49.50}\)
\(=\frac{2}{1.2}-\frac{1}{1.2}+\frac{3}{2.3}-\frac{2}{2.3}+...+\frac{50}{49.50}-\frac{49}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=1-\frac{1}{50}
\(A=\frac{1}{1.2.3.4}+\frac{1}{2.3.4.5}+\frac{1}{3.4.5.6}+....+\frac{1}{47.48.49.50}\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{2.3.4}+\frac{1}{2.3.4}-\frac{1}{3.4.5}+...+\frac{1}{47.48.49}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}\left(\frac{1}{1.2.3}-\frac{1}{48.49.50}\right)\)
\(=\frac{1}{3}.\frac{6533}{39200}=\frac{6533}{117600}\)
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{99.100}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{99}-\frac{1}{100}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{99}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-2.\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{100}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+...+\frac{1}{99}+\frac{1}{100}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{50}\right)\)
\(=\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}\)
Ta có:
\(\frac{1}{51}>\frac{1}{75}\)
\(\frac{1}{52}>\frac{1}{75}\)
......................
\(\frac{1}{75}=\frac{1}{75}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}>\frac{1}{75}+\frac{1}{75}+...+\frac{1}{75}=25.\frac{1}{75}=\frac{1}{3}\)(1)
Ta có:
\(\frac{1}{76}>\frac{1}{100}\)
\(\frac{1}{77}>\frac{1}{100}\)
........................
\(\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=25.\frac{1}{100}=\frac{1}{4}\)(2)
Từ (1) và (2) ta có:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}+\frac{1}{76}+...+\frac{1}{100}>\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}>\frac{7}{12}\)(5)
Ta có:
\(\frac{1}{51}=\frac{1}{51}\)
\(\frac{1}{52}< \frac{1}{51}\)
...................
\(\frac{1}{75}< \frac{1}{51}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}< \frac{1}{51}+\frac{1}{51}+...+\frac{1}{51}=25.\frac{1}{51}< 25.\frac{1}{50}=\frac{1}{2}\)(3)
Ta có:
\(\frac{1}{76}=\frac{1}{76}\)
\(\frac{1}{77}< \frac{1}{76}\)
...................
\(\frac{1}{100}< \frac{1}{76}\)
\(\Rightarrow\frac{1}{76}+\frac{1}{77}+...+\frac{1}{100}< \frac{1}{76}+\frac{1}{76}+...+\frac{1}{76}=25.\frac{1}{76}< 25.\frac{1}{75}=\frac{1}{3}\)(4)
Từ (3) và (4) ta có:
\(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{75}+\frac{1}{76}+...+\frac{1}{100}>\frac{1}{2}+\frac{1}{3}=\frac{5}{6}\)
\(\Rightarrow\frac{1}{51}+\frac{1}{52}+...+\frac{1}{100}< \frac{5}{6}\)(6)
Từ (5) và (6)
\(\Rightarrow\frac{7}{12}< \frac{1}{1.2}+\frac{1}{3.4}+...+\frac{1}{99.100}< \frac{5}{6}\)
đpcm
Tham khảo nhé~
Ta có vế trái:
\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{25}\right)\)
\(=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}=\)vế phải
Vậy\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+...+\frac{1}{50}\RightarrowĐpcm\)