Một mảnh đất hình chữ nhật có chiều rộng bé hơn chiều dài là 4 cm. Diện tích là 320cm\(^2\).
1, Tính chiều dài, chiều rộng
2,Hai vòi nước cùng chảy vào 1 bể cạn thì 3h20' đầy bể, người ta cho vòi thứ nhất chảy trong 3h, vòi thứ 2 chảy trong 2h thì được \(\frac{4}{5}\)bể. Tính thời gian mỗi vòi chảy riêng đầy bể.
Gọi thời gian hai vòi chảy riêng đầy bể lần lượt là \(x,y\)(giờ) \(x,y>0\).
Đổi: \(3h20'=\frac{10}{3}h\)
Mỗi giờ hai vòi chảy riêng được lần lượt số phần bể là: \(\frac{1}{x},\frac{1}{y}\)(bể)
Ta có hệ phương trình:
\(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{3}{10}\\\frac{3}{x}+\frac{2}{y}=\frac{4}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{5}\\\frac{1}{y}=\frac{1}{10}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=10\end{cases}}\)(tm)
Vậy thời gian hai vòi chảy riêng đầy bể lần lượt là \(5\)giờ, \(10\)giờ.
Gọi chiều dài mảnh đất là \(x\left(cm\right),x>4\).
Chiều rộng là: \(x-4\left(cm\right)\).
Ta có:
\(x\left(x-4\right)=320\)
\(\Leftrightarrow x^2-4x-320=0\)
\(\Leftrightarrow\left(x-20\right)\left(x+16\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=20\left(tm\right)\\x=-16\left(l\right)\end{cases}}\)
Vậy chiều dài là \(20cm\), chiều rộng là \(16cm\).