K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=x^3-3x^2y+3xy^2-y^3+y^3-3y^2z+3yz^2-z^3+z^3-3z^2x+3zx^2-x^3\)

\(=-3\left(x^2y+y^2z+z^2x\right)+3\left(xy^2+yz^2+zx^2\right)⋮6\)

 

AH
Akai Haruma
Giáo viên
8 tháng 7

Lời giải:

$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)$

Vì $x+y+z\vdots 6\vdots 2$ nên trong 3 số $x,y,z$ có thể có: 2 số
 lẻ 1 số chẵn, 3 số chẵn

Nếu $x,y,z$ là 3 số chẵn thì hiển nhiên $(x+y)(y+z)(x+z)\vdots 2$

Nếu $x,y,z$ có 2 số lẻ, 1 số chẵn thì tổng 2 số lẻ đó là 1 số chẵn

$\Rightarrow$ trong 3 số $x+y,y+z,x+z$ sẽ có 1 số chẵn.

$\Rightarrow (x+y)(y+z)(x+z)\vdots 2$

Vậy $(x+y)(y+z)(x+z)\vdots 2$

$\Rightarrow 3(x+y)(y+z)(x+z)\vdots 6$

Mà $x+y+z\vdots 6$

$\Rightarrow x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)\vdots 6$

5 tháng 10 2023

(x+y)(y+z)(z+x)-2xyz

⇒(x+y+z)-z(x+y+z)-x(x+y+z)-y-2xyz

⇒(x+y+z)nhân-(x+y+z)-2xyz

⇒6(-6)-2xyz⋮6

⇒(x+y)(y+z)(z+x)-2xyz⋮6

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

Ta có các nhận xét:
a2≡1(mod3)∨a2≡0(mod3)(1)a2≡1(mod3)∨a2≡0(mod3)(1)
a2≡1(mod4)∨a2≡0(mod4)(2)a2≡1(mod4)∨a2≡0(mod4)(2)
a)Giả sử trong x;y;z không có số nào chia hết cho 3.
Từ (1) nên ta có x2≡y2≡1(mod3)x2≡y2≡1(mod3)
Nên z2≡1+1≡2(mod3)z2≡1+1≡2(mod3): vô lý nên ta có đpcm.

28 tháng 7 2017

Tương tự: Câu hỏi của Nguyễn Thị Kim Anh - Toán lớp 8 | Học trực tuyến

29 tháng 10 2017

\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)\\ \RightarrowĐPCM\)

\(2005^3+125=\left(2005+5\right)\left(2005^2+2005\cdot5+5^2\right)=2010\left(2005^2+2005\cdot5+5^2\right)⋮2010\)\(x^2+y^2+z^2+3=2\left(x+y+z\right)\\ \Leftrightarrow x^2+y^2+x^2+3=2x+2y+2z\\ \Leftrightarrow x^2-2x+1+y^2-2y+1+z^2-2z+1=0\\ \Leftrightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2=0\\ \left(x-1\right)^2\ge0;\left(y-1\right)^2\ge0;\left(z-1\right)^2\ge0\\ \Rightarrow\left(x-1\right)^2=\left(y-1\right)^2=\left(z-1\right)^2=0\\ \Rightarrow x-1=y-1=z-1=0\\ \Leftrightarrow x=y=z=1\)

29 tháng 10 2017

b) \(2005^3+125\)

\(=2005^3+5^3\)

\(=\left(2005+5\right)\left(2005^2-2005.5+5^2\right)\)

\(=2010\left(2005^2-2005.5+5^2\right)\)\(⋮\) 2010

Vậy \(2005^3+125\) chia hết cho 2010

5 tháng 9 2017

bn ... ơi...mik ...bỏ...cuộc ...hu...hu

5 tháng 9 2017

. Huhu T^T mong sẽ có ai đó giúp mình "((

7 tháng 7 2015

Chị sợ e kh hỉu nên chỵ làm dài dòng xíu nha. em hỉu r thi thu gọn lại bỏ bớt mấy chỗ k cần thiết
1. Vì p nguyên tố và p>3 => p không chia hết cho 3 => p=3k+1 hoặc p=3k+2
Nếu p = 3k+1 =>(p-1).(p+1) =(3k+1-1).(3k+1+1)= 3k(3k+2) 
Vì 3k chia hết 3 => 3k(3k+2) chia hết cko 3. Hay(p-1).(p+1) ckia hết cho 3 (1)
Tương tự p=3k+2 =>p+1 = 3k+3 chia hết cho 3 =)( p-1)(p+1) chia hết cho 3 (2)
từ (1),(2) => (p-1)(p+1) chia het cho 3
Vì p nto và p >3 => p lẻ => p = 2h+1
Ta có (p-1).(p+1)= (2h+1-1)(2h+1+1)= 2h(2h+2)
Mà 2h và 2h+1 là tích 2 số chẵn liên tiếp => 2h(2h+2) chia hết cho 8
Mà (3,8)=1 => (p-1)(p+1) chia hết cho 24

27 tháng 5 2015

bài này bạn giải rồi mà

Số chính phương chia 3 dư 0 hoặc 1.

Số chính phương chia 4 dư 0 hoặc 1.

Đặt A = (x - y)(y - z)(z - x)

Vì 1 số chính phương chia 3, chia 4 đều dư 0 hoặc 1

- Vì x, y, z chia 3 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 3

=> Hiệu của chúng chia hết cho 3

=> x - y hoặc y - z hoặc z - x chia hết cho 3

=> A chia hết cho 3 (1)

- Vì x, y, z chia 4 dư 0 hoặc 1

=> Có ít nhất 2 số có cùng số dư khi chia cho 4

=> Hiệu của chúng chia hết cho 4

=> x - y hoặc y - z hoặc z - x chia hết cho 4

=> A chia hết cho 4 (2)

Tư (1) và (2) kết hợp với ƯCLN (3,4) = 1 => A chia hết cho 3 x 4 => A chia hết cho 12

26 tháng 5 2015

Cậu lấy trong quyển Toán nâng cao nào vậy ?