K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

giả sử 1 trong 3 số=2

=>abc chia hết cho 2

=>a;c chia hết cho 2

=>a=c=2=>b=2

với a;b;c cùng lẻ=>a^2+c^2 chia hết cho 2

mà abc ko chia hết cho 2=>vô lí

Vậy a=b=c=2

đặt 2n + 34 = a^2

34 = a^2-n^2

34=(a-n)(a+n)

a-n thuộc ước của 34 là { 1; 2; 17; 34} và a-n . Ta có bảng sau ( mik ko bt vẽ)

=>     a-n        1        2 

         a+n        34      17

        Mà tổng và hiệu 2 số nguyên cùng tính chẵn lẻ

      Vậy ....

Ta cóS = 14 +24 +34 +···+1004 không là số chính phương.

=>  S= (1004+14).100:2=50 900 ko là SCP

18 tháng 2 2020

Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)

\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)

Lại có \(a^2-a=a\left(a-1\right)⋮2\)

Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)

\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)

Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)

30 tháng 3 2017

là số nguyên tố

22 tháng 2 2018

la so nguyen to tk cho minh di

16 tháng 12 2016

A=4 B=5 C=7

16 tháng 12 2016

Lời giải nhé bạn

NV
11 tháng 9 2021

a. Ta có: \(2^p+1=\left(2^p-2\right)+3\)

Mà theo định lý Ferma nhỏ: \(2^p-2⋮p\Rightarrow3⋮p\Rightarrow p=3\)

b.

 - Với \(n=3k\Rightarrow2^n+1=2^{3k}+1=8^k+1\)

Mà \(8\equiv1\left(mod7\right)\Rightarrow8^k+1\equiv2\left(mod7\right)\Rightarrow\) ko chia hết cho 7

- Với \(n=3k+1\Rightarrow2^n+1=2^{3k+1}+1=2.8^k+1\)

\(2.8^k+1\equiv3\left(mod7\right)\Rightarrow\) ko chia hết cho 7

- Với \(n=3k+2\Rightarrow2^n+1=2^{3k+2}+1=4.8^k+1\)

\(4.8^k+1\equiv5\left(mod7\right)\Rightarrow\) không chia hết cho 7

Vậy \(2^n+1\) ko chia hết cho 7 với mọi n