K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2016

ai giúp giùm vs ạ

24 tháng 4 2016

ok

15 tháng 4 2018

a)  Xét    \(\Delta ABH\)và   \(\Delta CBA\)có:

     \(\widehat{AHB}=\widehat{CAB}=90^0\)

      \(\widehat{B}\) chung

suy ra:   \(\Delta ABH~\Delta CBA\)

b)   Áp dụng định lý Pytago  vào tam giác vuông  ABC ta có:

           \(BC^2=AB^2+AC^2\)

\(\Rightarrow\)\(BC^2=15^2+20^2=625\)

\(\Rightarrow\)\(BC=\sqrt{625}=25\)

\(\Delta ABH~\Delta CBA\)\(\Rightarrow\)\(\frac{AH}{AC}=\frac{BH}{AB}=\frac{AB}{BC}\)

\(\Rightarrow\)\(\frac{AH}{20}=\frac{BH}{15}=\frac{15}{20}=\frac{3}{4}\)

\(\Rightarrow\)\(\frac{AH}{20}=\frac{3}{4}\)\(\Rightarrow\)\(AH=15\)

         \(\frac{BH}{15}=\frac{3}{4}\)\(\Rightarrow\)\(BH=11,25\)

a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow BC^2=15^2+20^2=625\)

hay BC=25(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot25=15\cdot20\)

\(\Leftrightarrow AH\cdot25=300\)

hay AH=12(cm)

Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay HC=16(cm)

Vậy: BC=20cm; AH=12cm; HC=16cm

8 tháng 2 2021

Lớp 8 đã học hệ thức lượng đâu bạn, lớp 9 mới học mà

29 tháng 6 2018

Ôn tập: Tam giác đồng dạng

29 tháng 6 2018

Ôn tập: Tam giác đồng dạng

13 tháng 4 2018

a)Xét \(\Delta ABH\)\(\Delta CBA\) có:

\(\widehat{BHA}\)=\(\widehat{BAC}\)=900

\(\widehat{B}\) chung

\(\Rightarrow\Delta ABH\sim\Delta CBA\left(g.g\right)\)

b)Áp dụng định lý Pitago,ta có:

BC2=AB2+AC2

\(\Rightarrow\)BC2=152+202

\(\Rightarrow BC^2=225+400\)

\(\Rightarrow BC^2=625\)

\(\Rightarrow BC=\sqrt{625}\)

\(\Rightarrow BC=25cm\)

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{HBA}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow\dfrac{1}{AH^2}=\dfrac{1}{15^2}+\dfrac{1}{20^2}=\dfrac{625}{90000}\)

\(\Leftrightarrow AH=12\left(cm\right)\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=15^2-12^2=81\)

hay BH=9(cm)

Áp dụng định lí Pytago vào ΔAHC vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=AC^2-AH^2=20^2-12^2=256\)

hay CH=16(cm)

23 tháng 3 2022

a) xét  tam giác ABH và tam giác CBA

có góc B chung

góc AGB= góc BAC=90

=>tam giác ABH đồng dạng tam giác CBA

=>\(\dfrac{AB}{CB}=\dfrac{AH}{CA}\)

b) áp dụng định lý pytago có

AB2+AC2=BC2

Thay AB=8;AC=6

=>BC=10

Theo câu a)có:\(\dfrac{AB}{CB}=\dfrac{AH}{CA}\)

thay số \(\dfrac{8}{10}=\dfrac{AH}{6}\)

=>AH=4,8

 

23 tháng 3 2022

undefined

hình

26 tháng 9 2019

a)BC=25cm

AH=12cm

HC=16cm

b)áp dụng kiến thức 2 tam giác đồng dạng

cụ thể làΔABF vàΔCAE

c)