Cho n điểm phân biệt thuộc đường thẳn a và một điểm nằm ngoài đường thẳn ấy.Có bao nhiêu tam giác có các đỉnh là ba trong n+1 điểm trên?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta chỉ cần đếm số cách chọn hai điểm bất kì trong số \(n\)điểm phan biệt thuộc đường thẳng \(d\).
Chọn điểm thứ nhất có \(n\)cách chọn.
Chọn điểm thứ hai có \(n-1\)cách chọn.
Chọn hai điểm có \(n\left(n-1\right)\)cách chọn.
Mà ta có nhận xét: nếu hai điểm được chọn là \(A,B\)thì \(A\)là điểm thứ nhất, \(B\)là điểm thứ hai cũng giống như \(A\)là điểm thứ hai, \(B\)là điểm thứ nhất, do đó số cách chọn bị tính lên \(2\)lần.
Số cách chọn hai điểm từ \(n\)điểm là: \(\frac{n\left(n-1\right)}{2}\).
Với mỗi cách chọn như thế ta đều lập ra được một tam giác, vậy số tam giác thỏa mãn là: \(\frac{n\left(n-1\right)}{2}\).
55 hình tam giác *vì là violympic nên mình không ghi cách trình bày nha*
Có số Hình tam giác là :
10(10-1)/2=45(hình tam giác)
Vậy có 45 hình tam giác