Cho 2n+1 và n+1 là số chính phương.CMR: \(n⋮24\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2021n-19\equiv21n+21\left(mod40\right)\)suy ra ta cần chứng minh \(n+1⋮40\)(vì \(\left(21,40\right)=1\)).
Đặt \(m=n+1\). Ta sẽ chứng minh \(m⋮40\).
Đặt \(2m+1=a^2,3m+1=b^2\).
\(2m+1\)là số lẻ nên \(a\)là số lẻ suy ra \(a=2k+1\).
\(2m+1=\left(2k+1\right)^2=4k^2+4k+1\Rightarrow m=2\left(k^2+k\right)\)nên \(m\)chẵn.
do đó \(3m+1\)lẻ nên \(b\)lẻ suy ra \(b=2l+1\).
\(3m+1=4l^2+4l+1\Leftrightarrow3m=4l\left(l+1\right)\)có \(l\left(l+1\right)\)là tích hai số nguyên liên tiếp nên chia hết cho \(2\)do đó \(4l\left(l+1\right)\)chia hết cho \(8\)suy ra \(m⋮8\)vì \(\left(3,8\right)=1\).
Giờ ta sẽ chứng minh \(m⋮5\).
Nếu \(m=5p+1\): \(2m+1=10p+3\)có chữ số tận cùng là \(3\)nên không là số chính phương.
Nếu \(m=5p+2\): \(3m+1=15m+7\)có chữ số tận cùng là \(7\)nên không là số chính phương.
Nếu \(m=5p+3\): \(2m+1=10m+7\)có chữ số tận cùng là \(7\)nên không là số chính phương.
Nếu \(m=5p+4\): \(3m+1=15m+13\)có chữ số tận cùng là \(3\)nên không là số chính phương.
Do đó \(m=5p\Rightarrow m⋮5\).
Có \(m⋮8,m⋮5\)mà \(\left(5,8\right)=1\)suy ra \(m⋮\left(5.8\right)\Leftrightarrow m⋮40\).
Ta có đpcm.
Ta có: 2n+1 là số chính phương lẻ (do n tự nhiên)
nên 2n+1 chia 8 dư 1
=> 2n chia hết cho 8 => n chia hết cho 4
=> n+1 lẻ
Mà n+1 là số chính phương
=> n+1 chia 8 dư 1
=> n chia hết cho 8 (1)
Giả sử n không chia hết cho 3
Vì n+1 là số chính phương nên chia 3 dư 1 hoặc chia hết cho 3
=> n chia hết cho 3 hoặc chia 3 dư 2
Mà n không chia hết cho 3
=> n chia 3 dư 2
=> 2n+1 chia 3 dư 2 (vô lý vì số chính phương chia 3 dư 0 hoặc 1)
=> giả sử sai
=> n chia hết cho 3 (2)
Mặt khác : BCNN (8,3)=24 (3)
Từ (1)(2)(3) => n chia hết cho 24
$2n+1$ là số chính phương nên $2n+1 \equiv 0;1(mod3)$
Với $2n+1 \equiv 0 (mod 3)$ mà $n \equiv 0;2 (mod 3)$ do $n+1$ là scp nên ta loại
Với $2n+1 \equiv 1 (mod 3)$ hay $2n \equiv 0(mod3)$
Hay $n \equiv 3$
$2n+1 \equiv 1 (mod 8)$ nên $2n \equiv 0 (mod 8)$
suy ra $n \vdots 4$
$n+1 \equiv 1 (mod8)$
Nên $n \vdots 8$
$n \vdots 3$
$(8;3)=1$ nên $n \vdots 24$ hay $n$ là bội của 24
Vì n+1 và 2n+1 là số chính phương nên ta đặt n+1=k2 và 2n+1=m2 (k,m \(\in\)N)
Ta có: 2n+1 là số lẻ => m2 là số lẻ =>m là số lẻ
=>m=2a+1 (a \(\in\) N)
=>m2=(2a+1)2=(2a)2+2.2a.1+12
=4a.a+4.a+1
=4a(a+1)+1
=>n=\(\frac{2n-1}{2}=\frac{4a\left(a+1\right)+1-1}{2}=\frac{4a\left(a+1\right)}{2}=2a\left(a+1\right)\)
=>n là số chẵn
=>n+1 là số lẻ => n+1=2b+1 (b \(\in\)N)
=>k2=(2b+1)2=(2b)2+2.2b.1+12
=4b.b+4b+1
=4b(b+1)+1
=>n=4b(b+1)+1-1=4b(b+1)
Ta có: b(b+1) là tích 2 số tự nhiên liên tiếp
=>4b(b+1) chia hết cho 2.4=8 (1)
Ta có: k2+m2=(n+1)+(2n+1)=3n+2=2 (mod 3)
Mà k2 chia 3 dư 0 hoặc 1; m2 chia 3 dư 0 hoặc 1
=>Để k2+m2 =2 (mod 3)
thì k2=1 (mod 3)
và m2=1 (mod 3)
=>m2-k2 chia hết cho 3
=>(2n+1)-(n+1)=n chia hết cho 3
Vậy n chia hết cho 3 (2)
Từ (1) và (2) và (8;3)=1
=>n chia hết cho 8.3=24 (đpcm)
Vì 2n + 1 là số chính phương . Mà 2n + 1 là số lẻ
=> 2n + 1 = 1(mod8)
=> n chia hết cho 4
=> n + 1 là số lẻ
=> n + 1 = 1(mod8)
=> n chia hết cho 8
Mặt khác :
3n + 2 = 2(mod3)
=> (n + 1) + (2n + 1) = 2(mod3)
Mà n + 1 và 2n + 1 là các số chính phương lẻ
=> (n + 1) = (2n + 1) = 1(mod3)
=. n chia hết cho 3
Mà (3;8) = 1
Vậy n chia hết cho 24
Vì 2n + 1 là số chính phương . Mà 2n + 1 là số lẻ
=> 2n + 1 = 1(mod8)
=> n chia hết cho 4
=> n + 1 là số lẻ
=> n + 1 = 1(mod8)
=> n chia hết cho 8
Mặt khác :
3n + 2 = 2(mod3)
=> (n + 1) + (2n + 1) = 2(mod3)
Mà n + 1 và 2n + 1 là các số chính phương lẻ
=> (n + 1) = (2n + 1) = 1(mod3)
=. n chia hết cho 3
Mà (3;8) = 1
Vậy n chia hết cho 24
chào bạn gà