Cho tam giác abc cân tại A, Â tù. Vẽ đường thẳng BI vuông góc với đường thẳng AC và CK vuông góc với đường thẳng AB. Đường thẳng BI và CK cắt nhau tại I. Cm: a) tam giác BCD cân. b) vẽ ANH vuông góc với BC chứng minh DANH thẳng hàng.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔABC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(Hai cạnh tương ứng)
a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
Suy ra: AH=AK
b: Xét ΔKAI vuông tại K và ΔHAI vuông tại H có
AI chung
AK=AH
Do đó: ΔKAI=ΔHAI
Suy ra: \(\widehat{KAI}=\widehat{HAI}\)
c: Ta có: ΔABC cân tại A
mà AI là đường phân giác
nên AI là đường cao
hay AI⊥BC tại P
Hình bạn tự vẽ
a) CMR: AH = AK:
Xét tam giác AHB vuông tại H và tam AKC vuông tại K, ta có:
AB = AC ( vì tam giác ABC cân tại A )
góc A chung
Do đó: tam giác AHB = tam giác AKC ( ch-gn )
Suy ra: AH = AK ( 2 cạnh tương ứng)
b) CMR: góc KAI = góc HAI:
Xét tam giác KAI vuông tại K và tam giác HAI vuông tại H, ta có:
AH = AK ( chứng minh câu a )
cạnh AI chung
Do đó: tam giác KAI = tam giác HAI ( ch-cgv)
suy ra: góc KAI = góc HAI ( 2 góc tương ứng )
c) CM: AM vuông góc BC tại M ( AM vuông góc tại M nhé bạn )
Xét tam giác BAM và tam giác CAM, có:
cạnh AM chung
AB = AC ( vì tam giác ABC cân tại A )
góc KAI = góc HAI ( chứng minh câu b )
do đó: tam giác BAM = tam giác CAM ( c-g-c)
suy ra: góc AMB = góc AMC ( 2 góc tương ứng )
ta có: góc AMB + góc AMC = 180 độ ( kề bù )
hay 2. góc AMB = 180 độ
=> 180 độ : 2 = 90 độ
do đó: AM vuông góc BC tại M ( đpcm )
Câu d mình làm sau do máy mình hết pin rồi!
a) Xét tam giác BHI và tam giác ABI:
BHI = ABI (=90o)
HBI = BAI ( cùng phụ ABH)
=> Tg BHI ~ tg ABI (g.g)
=> \(\frac{IH}{BI}\)= \(\frac{BI}{IA}\)
=> BI2 = IH.IA (1)
Xét tam giác BCD có:
IH // CD (cùng vuông góc BC)
H trđ BC ( tam giác ABC cân tại Acó AH là dg cao => AH là dg trung tuyến)
=> I trđ BD => BI = ID (2)
Từ (1), (2) => ID2 = IH.IA (dpcm)
b) Ta có: DCK = CBK ( cùng phụ BCK)
Mà BAH = CBK (cmt)
=> DCK = BAH
Xét tg CKD và tg ABI:
DCK = BAI (cmt)
CKD = ABI ( =90o)
=> Tg CKD ~ tg ABI ( g.g)
"Còn NC = NK mình nhìn mắt thường còn chưa thấy nó bằng nhau lun á"
a) Tg ABC cân tại A có AH vuông BC (gt)
=> BH=HC
- Tg BDC có :
BH=HC (cmt)
HI//CD (cùng vuông BC)
=> BI=ID (đường TB)
- Xét tg ABI vuông tại B, đường cao BH có :
IH.IA=BI2 (htl)
Mà BI=ID (cmt)
=> ID2=IH.IA
b) Xét tg CKD và ABI có :
\(\widehat{CKD}=\widehat{ABI}=90^o\)
\(\widehat{AIB}=\widehat{CDK}\)(AI//CD)
=> Tg CDK~ABI (g.g)
\(\Rightarrow\frac{CK}{AB}=\frac{KD}{BI}\)
=> CK.BI=KD.AB (1)
Có : CK//AB\(\Rightarrow\frac{NK}{AB}=\frac{DK}{DB}\left(Talet\right)\)
=> NK.DB=AB.DK (2)
-Từ (1) và (2) => CK.BI=NK.DB=NE.2BI
=> CK=2NK
\(\Rightarrow NK=NC=\frac{CK}{2}\left(đccm\right)\)
#H
Điểm D ở đâu vậy bạn?