K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

A B C M 1 2 Q G

A) XÉT \(\Delta ABM\)\(\Delta ACM\)

\(AB=AC\left(GT\right)\)

\(\widehat{A_1}=\widehat{A_2}\left(GT\right)\)

AM LÀ CẠNH CHUNG

=>\(\Delta ABM\)=\(\Delta ACM\)( C-G-C)

TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ ĐƯỜNG CAO

=> AM LÀ  ĐƯỜNG CAO CỦA  \(\Delta ABC\)

\(\Rightarrow AM\perp BC\)

B) TRONG TAM GIÁC CÂN TIA PHÂN GIÁC CŨNG LÀ TRUNG TUYẾN 

=> AM LÀ TRUNG TUYẾN THỨ NHẤT CỦA  \(\Delta ABC\)

MÀ BG LÀ ĐƯỜNG TRUNG TUYẾN THỨ HAI CỦA  \(\Delta ABC\)

HAI ĐƯỜNG TRUNG TUYẾN NÀY CẮT NHAU TẠI G

\(\Rightarrow G\)LÀ TRỌNG TÂM CỦA \(\Delta ABC\)

10 tháng 5 2019

a,XétΔABM và ΔACM có :

^AMB=^AMC(=90o)

AB=AC(GT)

AM :cạnh chung(gt)

Suy ra:ΔABM= ΔACM (ch-cgv)

=>MB=MC( 2 cạnh tương ứng)

b,Ta có MB=BC2 =242 = 12

Δ AMB vuông tại M có :

AM2+BM2=AB2 ( đl Pytago)

=>AM2=AB2−BM2

202−122

162

=>AM=16

a) Xét ΔABM vuông tại B và ΔACM vuông tại M có 

AM chung

AB=AC(ΔABC cân tại A)

Do đó: ΔABM=ΔACM(cạnh huyền-cạnh góc vuông)

27 tháng 12 2021
Giúp mình bài này đi mà :
23 tháng 8 2019

Ko

Bt 

Lm

23 tháng 8 2019

a)Xét tam giác ABD và tam giác BE 

\(\widehat{ADE=}\widehat{AEC=}90^o\)

AB =AC tam giác chung 

Vậy A chung ss...

=>Tam giác AD =A vuông tại E(cạnh huyền góc nhọn)

Vậy đường thẳng trên khác biệc mỗi 90* 

b) Phân tích tam giác ABM

Ta có ABM gọi chung là H

Vậy thì trong đoạn trên H:

\(\widehat{HAB}=\widehat{HAC}\)(vuông tại A)

Vuông tại AC=AB (tam gs cân tại AB

Tam giác AHB =AHC (cân tại A) 

=> Tam giác ABC =AHC (c.g.c)

Vậy : AMB = ACM

c)

Không ghi lại phần trình bày tất cả :

\(\Rightarrow\widehat{AED}=\frac{180^o-\widehat{A}}{2}\left(1\right)\)

tam giác ABC cân tại A

\(=>AMB=\frac{180-\widehat{A}}{4}\)(gấp đôi 1 phần)

_Đi qua đi lại xin 1 k thoi nha :>_

17 tháng 7 2023

loading...

Hình đây nhé:
loading...

17 tháng 7 2023

Hình đầu tiên mik vẽ chưa hết, hình ở ảnh 2 mới là đúng nhé b:))

19 tháng 6 2020

tự kẻ hình nha

a) vì tam giác ABC cân A=> AB=AC

xét tam giác ABM và tam giác ACM có

A1=A2(gt)

AB=AC(cmt)

AM chung

=> tam giác ABM= tam giác ACM(cgc)

=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ( kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC

b) từ tam giác AMB= tam giác AMC=> BM=CM( hai cạnh tương ứng)

=> M là trung điểm BC=> AM là trung tuyến 

BQ là trung tuyến

mà AM giao BQ tại G=> G là trọng tâm của tam giác ABC

c) ta có BC=BM+CM mà BM=CM=> BM=CM=BC/2=18/2=9 cm

ta có AM^2=AB^2-BM^2=15^2-9^2=225-81=144=12^2=> AM=12

vì G là trọng tâm của tam giác ABC=> AG=2/3AM=> AG=12*2/3=8 cm

d) vì MD//AC=> CAM=AMD( so le trong)

mà CAM=BAM(gt)

=> BAM=AMD=> tam giác AMD cân D=> AD=DM

vì tam giác ABM vuông tại M=> ABM+BAM=90 độ=> ABM=90 độ-BAM

vì AMD+DMB=AMB=> DMB=90 độ-AMD

mà AMD=BAM (cmt)

=> DMB=ABM=> tam giác DMB cân D=> BD=DM=> BD=AD=> D là trung điểm AB=> DC là trung tuyến 

mà G là trọng tâm => G thuộc CD=> D, G, C thẳng hàng

22 tháng 6 2020
Giải. a) Vì AM là tia phân giác của góc BAC nên