a^2+b^2/2>=(a+b/2)^2 Giai ho bat phuong trinh nha cac ban
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.: Áp dụng BĐT Cauchy-Schwarz cho 3 số dương
\(a+b+c\ge3\sqrt[3]{abc};\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{abc}}\)
\(\Rightarrow\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\frac{1}{abc}}=9\)
2( x - 1 ) - 5 = 3( 5 - 3x)
2x - 2 - 5 = 15 - 9x
2x - 7 = 15 - 9x
2x + 9x = 15 + 7
11x = 22
x = 2
Vậy x = 2
\(2\left(x-1\right)-5=3\left(5-3x\right)\)
\(\Leftrightarrow2x-2-5=15-9x\)
\(\Leftrightarrow2x-\left(2+5\right)=15-9x\)
\(\Leftrightarrow2x-7=15-9x\)
\(\Leftrightarrow2x+9x=15+7\)
\(\Leftrightarrow11x=22\)
\(\Leftrightarrow x=22\div11\)
\(\Leftrightarrow x=2\)
\(\text{Vậy }x=2\)
Ix-1I+Ix-2I>x+3 (1)
Ta xét các TH về giá trị của x:
TH1: \(x< -1\)
(1) \(\leftrightarrow1-x+2-x>x+3\)
\(\leftrightarrow3-x>x+3\)
\(\leftrightarrow x< 0\) (2)
TH2:\(-1\le x< 2\)
(1)\(\leftrightarrow x-1+2-x>x+3\)
\(\leftrightarrow1>x+3\)
\(\leftrightarrow x< -2\)(loại) (3)
TH3:\(x\ge2\)
(1)\(\leftrightarrow x-1+x-2>x+3\)
\(\leftrightarrow2x-3>x+3\)
\(\leftrightarrow x>6\) (4)
Từ (2),(3) và (4) \(\rightarrow\orbr{\begin{cases}x< 0\\x>6\end{cases}}\)
giai di giai di giai di............................................................
giai di ma , lam on
x2 - 3x - 2x +6 = x(x - 3) - 2(x - 3)
=(x - 3)(x - 2)
suy ra ta tìm được nghiệm của pt là x= 3 hoặc x=2
-2x2 - x - 2 > 0
=> -2x2 - x - 2 = 0
=> x không € R
-2x2 - x - 2 > 0, a = -2
=> x € tập hợp rỗng
x 1-x 2x+1 3-2x Tích số -1/2 1 3/2 0 0 0 0 0 0 + + - - - + + + + + + - - + - +
Vậy , nghiệm của BPT : −12<x<1−12<x<1 hoặc : x > 3232
\(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)
\(\Leftrightarrow\frac{a^2+b^2}{2}\ge\frac{\left(a+b\right)^2}{4}\Leftrightarrow\frac{a^2+b^2}{2}\ge\frac{a^2+2ab+b^2}{4}\)
\(\Leftrightarrow4\left(a^2+b^2\right)\ge2\left(a^2+2ab+b^2\right)\)
\(\Leftrightarrow4a^2+4b^2-2a^2-4ab-2b^2\ge0\)
\(\Leftrightarrow\left(4a^2-2a^2\right)+\left(4b^2-2b^2\right)-4ab\ge0\)
\(\Leftrightarrow2a^2+2b^2-4ab\ge0\Leftrightarrow2\left(a^2+b^2-2ab\right)\ge0\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)
Vậy ta có đpcm