Cho phương trình : x\(^2\) - 2mx + 2m - 7 = 0 (1) ( m là tham số )
a) Giải phương trình (1) khi m = 1
b) Tìm m để x = 3 là nghiệm của phương trình (1). Tính nghiệm còn lại.
c) Chứng minh rằng phương trình luôn có hai nghiệm phân biệt x\(_1\), x\(_2\). Tìm m để
x\(_1\)\(^2\) + x\(_2\)\(^2\) = 13
d) Gọi x\(_1\),x\(_2\) là hai nghiệm của phương trình (1). Tìm giá trị nhỏ nhất của biểu thức
x\(_1\)\(^2\) + x\(_2\)\(^2\) + x\(_1\)x\(_2\).
Giải giúp mình với ạ
Lời giải:
a) Khi $m=1$ thì pt trở thành:
$x^2-2x-5=0$
$\Leftrightarrow (x-1)^2=6$
$\Rightarrow x=1\pm \sqrt{6}$
b) Để $x_1=3$ là nghiệm của pt thì:
$3^2-2.m.3+2m-7=0\Leftrightarrow m=\frac{1}{2}$
Nghiệm còn lại $x_2=(x_1+x_2)-x_1=2m-x_1=2.\frac{1}{2}-3=-2$
c)
$\Delta'= m^2-(2m-7)=(m-1)^2+6>0$ với mọi $m\in\mathbb{R}$ nên pt luôn có 2 nghiệm phân biệt $x_1,x_2$
Theo định lý Viet: $x_1+x_2=2m$ và $x_1x_2=2m-7$
Khi đó:
Để $x_1^2+x_2^2=13$
$\Leftrightarrow (x_1+x_2)^2-2x_1x_2=13$
$\Leftrightarrow (2m)^2-2(2m-7)=13$
$\Leftrightarrow 4m^2-4m+1=0\Leftrightarrow (2m-1)^2=0\Leftrightarrow m=\frac{1}{2}$
d)
$x_1^2+x_2^2+x_1x_2=(x_1+x_2)^2-x_1x_2$
$=(2m)^2-(2m-7)=4m^2-2m+7=(2m-\frac{1}{2})^2+\frac{27}{4}\geq \frac{27}{4}$
Vậy $x_1^2+x_2^2+x_1x_2$ đạt min bằng $\frac{27}{4}$. Giá trị này đạt tại $m=\frac{1}{4}$