Giups tui với:
Cho tam giác ABC cân tại A. Kẻ BD vuông góc AC, CE vuông góc AB.Gọi O là giao điểm CE với BD
a) tam giác EBC=tam giác DBC
b) tam giác AED cân
c) AO là trung trực của ED
d) ED song song BC
b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) xét 2 tam giác vuông ABD và ACE có:
AB=AC(gt)
\(\widehat{A}\)chung
=> tam giác ABD=tam giác ACE(CH-GN)
b)vì tam giác ABD=tam giác ACE(câu a) => AD=AE
=> tam giác AED cân tại A
c) ta thấy H là trực tâm của tam giác cân ABC
=> \(\widehat{BAH}\)=\(\widehat{CAH}\)
gọi O là giao điểm của AH và ED
xét tam giác AOE và tam giác AOD có:
AE=AD(tam giác AED cân)
\(\widehat{EAO}\)=\(\widehat{DAO}\)(cmt)
AO chung
=> tam giác AOE=tam giác AOD(c.g.c)
=> OE=OD=> O là trung điểm của ED(1)
\(\widehat{AOE=\widehat{AOD}}\)mà 2 góc này ở vị trí kề bù nên \(\widehat{AOE=\widehat{AOD}}\)=90 độ => AO\(\perp\)ED(2)
từ (1) và (2) => AH là trung trực của ED
a) Xét tam giác ABD và tg ACE có:
D^ = E^ = 90độ (gt)
A là góc chung
AB = AC ( do tam giác ABC cân tại A)
=> tam giác ABD = tam giác ACE (ch-gn)
b) Vì AD = AE ( tg ABD = tg ACE)
=> tg AED cân tại A.
c) Vì AD = AE (cmt)
=> A thuộc đường trung trực của ED.
Xét tg AEH và tg ADH có:
E^ = D^ = 90độ (gt)
AD = AE (cmt)
AH cạnh huyền chung.
=> tg AEH = tg ADH (ch-cgv)
=> HE = HD.
=> H thuộc đường trung trực của ED.
=> AH là đường trung trực của ED.
Cho tam giác ABC vuông tại B có góc B1=B2 ; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.
a) Tính góc ABH.
b) Chứng minh đường thẳng d vuông góc với BH.
a) xét 2 tam giác vuồn ABD và AEC có:
AB=AC(tam giác ABC cân tại A)
A(chung)
suy ra tam giác ABD=ACE(CH-GN)
b)
theo câu a,. ta có: tam giác ABD=ACE(CH-GN)
suy ra AE=AD
suy ra tam giác ADE cân tại A
xét tam giác ABD và tam giác ACE có
A là góc chung
AB=AC(tam giác ABC cân tại A)
Góc ADB = AEC=90 độ
Suy ra tam giác ABD=ACE(ch-cgv)
phần b bạn suy từ phần a nha
a, Xét \(\Delta ABD\) và \(\Delta ACE\) vuông tại \(D;E\) có:
\(AB=AC\left(\Delta ABC-cân\right)\)
\(\widehat{A}\) chung
\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\left(1\right)\)
\(\Rightarrow BD=CE\left(2c.t.ứ\right)\)
b, Từ \(\left(1\right)\Rightarrow AD=AE\left(2c.t.ứ\right)\)
\(\Rightarrow\Delta ADE\) cân tại \(A\)
\(\Rightarrow\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)
Ta có: \(\Delta ABC\) cân tại \(A\)
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\left(3\right)\)
c, Từ \(\left(3\right)\left(2\right)\Rightarrow\widehat{AED}=\widehat{ABC}\)
Mà 2 góc đang ở vị trí đồng vị nên:
\(\Rightarrow DE//BC\)
d, Xét \(\Delta EIB\) và \(\Delta DIC\) vuông tại \(E;D\) có:
\(EB=DC\left(AB=AC;EA=DA\right)\)
\(\widehat{EIB}=\widehat{DIC}\left(đ.đỉnh\right)\)
\(\Rightarrow\Delta EIB=\Delta DIC\left(cgv-gnđ\right)\left(4\right)\)
e, Xét \(\Delta BIE\) có:
\(\widehat{BEI}=90^0\)
\(\Rightarrow\Delta BIE\) vuông tại \(E\)
f, Từ \(\left(4\right)\Rightarrow BI=CI\left(2c.t.ứ\right)\left(5\right)\)
Ta có: \(BM=CM\left(M-là-t.điểm-BC\right)\)
\(\Rightarrow D\in\) đường trung trực \(BC\left(6\right)\)
Từ \(\left(5\right)\Rightarrow I\in\) đường trung trực \(BC\left(7\right)\)
Và \(AB=AC\Rightarrow A\in\) đường trung trực \(BC\left(8\right)\)
Từ \(\left(6\right)\left(7\right)\left(8\right)\Rightarrow A;I;M\) thẳng hàng.
P/s: Sửa đề Gọi \(M\) là trung điểm \(BC\)
Nếu nhưu gọi \(D\) thì nó bị trùng rồi bạn.
Có gì không hiểu thì hỏi ^_^
Vì tam giác ABC cân tại A nên AB = AC
góc ABC = góc ACB
Xét tam giác EBC vuông tại E và tam giác DCB vuông tại D, có:
BC là cạnh chung
góc EBC = góc DCB (góc ABC = góc ACB)
=> Tam giác EBC = Tam giác DCB ( cạnh huyền - góc nhọn )
b, Vì Tam giác EBC = Tam giác DCB
nên EB = DC
mà AB = AC
=> EB - AB = DC - AC
=> AE = AD
=> Tam giác AED cân tại A.