K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: \(2x^3-5x^2+8x-3=0\)

\(\Leftrightarrow2x^3-x^2-4x^2+2x+6x-3=0\)

=>2x-1=0

hay x=1/2

NV
22 tháng 2 2021

Đặt \(P=a^2+b^2+c^2+ab+bc+ca\)

\(P=\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{2}\left(a^2+b^2+c^2\right)\)

\(P\ge\dfrac{1}{2}\left(a+b+c\right)^2+\dfrac{1}{6}\left(a+b+c\right)^2=6\)

Dấu "=" xảy ra khi \(a=b=c=1\)

25 tháng 8 2023

Cần gấp ko bạn

Nếu gấp thì sang web khác thử

21 tháng 7 2021

a) `4x-2>5x+1`

`<=>-x>3`

`<=>x<-3`

b) Theo BĐT Cauchy:

`a^2+b^2 >= 2ab`

Tương tự:

`b^2+c^2>=2bc`

`c^2+a^2>=2ca`

Cộng vế với vế: `2(a^2+b^2+c^2) >= 2(ab+bc+ca)`

`<=>a^2+b^2+c^2 >= ab+bc+ca` (ĐPCM)

21 tháng 7 2021

a, \(4x-2>5x+1\Leftrightarrow-x>3\Leftrightarrow x< -3\)

b, Ta có : \(a^2+b^2+c^2\ge ab+bc+ca\)

\(2a^2+2b^2+2c^2\ge2ab+2bc+2ca\)

\(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ac+a^2\right)\ge0\)

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)* luôn đúng *

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk

Sửa đề: 1+a^2;1+b^2;1+c^2

\(\dfrac{a}{\sqrt{1+a^2}}=\dfrac{a}{\sqrt{a^2+ab+c+ac}}=\sqrt{\dfrac{a}{a+b}\cdot\dfrac{a}{a+c}}< =\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{a}{a+c}\right)\)

\(\dfrac{b}{\sqrt{1+b^2}}< =\dfrac{1}{2}\left(\dfrac{b}{b+c}+\dfrac{b}{b+a}\right)\)

\(\dfrac{c}{\sqrt{1+c^2}}< =\dfrac{1}{2}\left(\dfrac{c}{c+a}+\dfrac{c}{a+b}\right)\)

=>\(A< =\dfrac{1}{2}\left(\dfrac{a+b}{a+b}+\dfrac{b+c}{b+c}+\dfrac{c+a}{c+a}\right)=\dfrac{3}{2}\)

25 tháng 5 2021

a) \(\dfrac{a^2+a+1}{a^2-a+1}=\dfrac{\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\)

Thấy tử và mẫu của phân số đều lớn hơn 0 => \(\dfrac{a^2+a+1}{a^2-a+1}>0\)

b)\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)

\(\Leftrightarrow\left(a^2-2a+1\right)+\left(b^2-2a+1\right)+\left(c^2-2a+1\right)\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) (luôn đúng với mọi a,b,c)

Dấu = xra khi a=b=c=1

25 tháng 5 2021

b)

\(a^2-2a+1+b^2-2b+1+c^2-2c+1\ge0\)

\(\Leftrightarrow\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\) ( Luôn đúng)

Dấu "=" xảy ra khi a=b=c=1