Cho ∆ABC. Trên cạnh AB, AC lần lượt lấy các điểm B', C'. Chứng minh: S ABC/ S AB'C'= AB/AB.AC/AC'
giúp với cái này mình chịu rồi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ đoạn thẳng AM. Xét tam giác MAC. Chứng minh tương tự như bài 1.4 ta có MN < a, trong đó a là đoạn lớn nhất trong hai đoạn thẳng MA và MC. Nếu ta chứng minh được
MA < AC và MC < AC thì sẽ suy ra được a < AC, từ đó có MN < AC.
Trong tam giác ABC có AB ≤ AC, M ∈ BC (M ≠ B, M ≠ C); Chứng minh tương tự bài 1.4, ta có AM < AC. Mặt khác MC < BC ≤ CA. Vậy a < AC, suy ra MN < AC.
ΔOBC cân tại O ⇒ OB = OC.
ΔAOB và ΔAOC có: AO chung, AB = AC (giả thiết), OB = OC (cmt)
⇒ ΔAOB = ΔAOC (c.c.c).
⇒ ∠BAO = ∠CAO
⇒ AO là tia phân giác của góc BAC
⇒ O cách đều hai cạnh AB, AC
- Gọi CH, C'H' lần lượt là đường cao của tam giác ABC,AB'C'.
- Ta có: CH⊥AB (CH là đường cao của tam giác ABC).
C'H'⊥AB (C'H' là đường cao của tam giác AB'C')>
=>CH//C'H'.
- Xét tam giác AB'C' có:
CH//C'H' (cmt)
=>\(\dfrac{AC}{AC'}=\dfrac{AH}{AH'}\)(định lí Ta-let)
*\(\dfrac{S_{ABC}}{S_{AB'C'}}=\dfrac{CH.AB}{C'H'.AB'}=\dfrac{AC}{AC'}.\dfrac{AB}{AB'}\)