Cho S = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/23.24.25
Hãy so sánh S với 0,25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tổng quát: \(\frac{2}{\left(a-1\right)a\left(a+1\right)}=\frac{1}{\left(a-1\right).a}-\frac{1}{a\left(a+1\right)}\)
Ta có: \(S=\frac{2}{1.2.3}+\frac{2}{2.3.4}+.....+\frac{2}{2013.2014.2015}\)
\(S=\left(\frac{1}{1.2}-\frac{1}{2.3}\right)+\left(\frac{1}{2.3}-\frac{1}{3.4}\right)+.....+\left(\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)
\(S=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+....+\frac{1}{2013.2014}-\frac{1}{2014.2015}\)
\(S=\frac{1}{1.2}-\frac{1}{2014.2015}=\frac{1}{2}-\frac{1}{2014.2015}<\frac{1}{2}\)
Vậy....................
S=(2/1.2-2/2.3)+(2/2.3-2/3.4)+(2/3.4-2/4.5)+...........+(2/2013.2014-2/2014-2/2015)
S=(2/1.2-2/2014.2015):2
S=1-2/2014.2/2015
--> S>1/2
\(S=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{2013.2014.2015}\)
\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{2013.2014}-\frac{1}{2014.2015}\right)\)
\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2014.2015}\right)\)
\(S=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{4058210}\right)\)
\(S=\frac{1}{2}.\left(\frac{2029105}{4058210}-\frac{1}{4058210}\right)\)
\(S=\frac{1}{2}.\frac{2029104}{4058210}\)
\(S=\frac{1014552}{4058210}\)
Chúc bạn học tốt !!!
Công thức :
\(\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}\right)=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{6}\right)=\frac{1}{2}.\left(\frac{3}{6}-\frac{1}{6}\right)=\frac{1}{2}.\frac{2}{6}=\frac{1}{6}=\frac{1}{1.2.3}\)
Ta có: M=\(\frac{1}{1.2.3}\) +\(\frac{1}{2.3.4}\) +\(\frac{1}{3.4.5}\) +...+\(\frac{1}{100.101.102}\)
M=2.(\(\frac{1}{1.2.3}\) +\(\frac{1}{2.3.4}\) +\(\frac{1}{3.4.5}\) +...+\(\frac{1}{100.101.102}\) ).\(\frac{1}{2}\)
M=(\(\frac{2}{1.2.3}\) +\(\frac{2}{2.3.4}\) +\(\frac{2}{3.4.5}\) +...+\(\frac{2}{100.101.102}\) ).\(\frac{1}{2}\)
M=(\(\frac{1}{1.2}\) -\(\frac{1}{2.3}\) +\(\frac{1}{2.3}\) -\(\frac{1}{3.4}\) +\(\frac{1}{3.4}\) -\(\frac{1}{4.5}+...+\frac{1}{100.101}-\frac{1}{101.102}\) ).\(\frac{1}{2}\)
M=( \(\frac{1}{1.2}-\frac{1}{101.102}\)).\(\frac{1}{2}\)
Mà \(\frac{1}{1.2}-\frac{1}{101.102}<1\)
Và \(\frac{1}{2}<1\)
\(=>\) (\(\frac{1}{1.2}-\frac{1}{101.102}\) ) .\(\frac{1}{2}\) \(<1\)
\(=>\) M <1
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{2014.2015.2016}\)
\(A=\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2015.2016}\right)\)
\(A=0,2499998...<0,25\)
\(\Rightarrow A<\frac{1}{4}\)
S = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/23.24.25
2.S = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 + ... + 2/23.24.25
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ...+ 1/23.24 - 1/24.25
= 1/1.2 - 1/24.25 = 1/2 - 1/600
=> S = (1/2 - 1/600) : 2 = 1/4 - 1/1200
Dễ thấy S < 1/4 Hay S < 0,25
1/2.(2/1.2.3+2/2.3.4+......2/23.24.25)
1/2.(1/1.2-1/2.3+1/2.3-1/3.4+……+1/23.24-1/24.25)
1/2.(1/1.2-1/24.25)
1/2.(1/2-1/600)
1/2.(300/600-1/600)
1/2.299/600
299/1200
Ta co 0.25=1/4
Nen ta so sanh 1/4 va 299/1200
Vi 300/1200>299/1200
Nen 1/4>299/1200
Ket luan 0,25>S