Cho tứ giác ABCD có Bx là tia đối tia BC, BA là phân giác góc DBx. CM: góc ADB = góc ACB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có:
\(\widehat{A}+\widehat{ABC}+\widehat{BCA}=180\)
\(\Rightarrow\widehat{BCA}=180-90-60=30\)
Vì \(BC\perp Cy\Rightarrow\widehat{BCy}=90\)
Mà \(\widehat{BCy}+\widehat{ECF}+\widehat{BCA}=180\)
\(\Rightarrow\widehat{ECF}=180-90-30=60\left(1\right)\)
Vì \(\widehat{FBC}+\widehat{BCA}+\widehat{BFC}=180\)
\(\Rightarrow\widehat{BFC}=180-\frac{\widehat{ABC}}{2}-\widehat{BCA}\)
\(\Rightarrow\widehat{BFC}=60\left(2\right)\)
Từ \(\left(1\right)\)và\(\left(2\right)\)\(\Rightarrow\Delta CEF\)là tam giác đều
a) Xét ΔABC∆ABC vuông tại AA
ˆABC=60oABC^=60o
⇒ACB=30o⇒ACB=30o
Ta có: BEBE là phân giác của ˆBB^
⇒ˆCBE=12ˆABC=30o⇒CBE^=12ABC^=30o
⇒ˆFEC=ˆECB+ˆEBC=60o⇒FEC^=ECB^+EBC^=60o
Xét ΔCBF∆CBF vuông tại CC có:
ˆCBF=30oCBF^=30o
⇒ˆCFB=60o⇒CFB^=60o
Xét ΔCEF∆CEF có:
ˆFEC=ˆCFB=60oFEC^=CFB^=60o
Do đó ΔCEG∆CEG đều
b) Sửa đề: ABCDABCD là hình thang cân
Ta có:
ˆBAC=ˆBDC=90oBAC^=BDC^=90o
Do đó ABCDABCD là tứ giác nội tiếp
⇒ˆACB=ˆADB=30o⇒ACB^=ADB^=30o
Ta lại có: ˆDBC=ˆACB=30oDBC^=ACB^=30o
nên ˆABD=ˆDBCABD^=DBC^
⇒ABCD⇒ABCD là hình thang đáy AB,CDAB,CD
Mặt khác: ΔDBC∆DBC vuông tại DD có:
ˆDBC=30oDBC^=30o
⇒ˆDCB=60o=ˆABC⇒DCB^=60o=ABC^
Do đó ABCDABCD là hình thang cân
Câu hỏi của •Ƙ - ƔℌŤ⁀ᶦᵈᵒᶫ - Toán lớp 7 - Học toán với OnlineMath
+) \(\Delta\)ABC cân => \(\hept{\begin{cases}AB=AC\left(1\right)\\\widehat{ABC}=\widehat{ACB}\end{cases}}\)
Ta có: \(\widehat{BAC}=100^o\)=> \(\widehat{ABC}=\widehat{ACB}=\frac{180^o-\widehat{BAC}}{2}=40^o\)
\(\widehat{IBC}=\widehat{ABC}-\widehat{ABI}=40^o-10^o=30^o\)
\(\widehat{ACI}=\widehat{BCI}=\frac{\widehat{ACB}}{2}=\frac{40^o}{2}=20^o\)(i)
+) Trên nửa mặt phẳng bờ AC chứa B lấy điểm K sao cho \(\Delta\)AKC đều => \(\hept{\begin{cases}\widehat{KAC}=\widehat{ACK}=\widehat{AKC}=60^o\\AK=KC=AC\left(2\right)\end{cases}}\)
=> \(\widehat{BAK}=\widehat{BAC}-\widehat{KAC}=100^o-60^o=40^o\)
Từ (1); (2) => AB=AK => \(\Delta\)ABK cân tại A => \(\widehat{ABK}=\widehat{AKB}=\frac{180^o-\widehat{BAK}}{2}=70^o\)
=> \(\widehat{KBC}=\widehat{ABK}-\widehat{ABC}=70^o-40^o=30^o\)
\(\widehat{KCB}=\widehat{KCA}-\widehat{ACB}=60^o-40^o=20^o\)
+) Xét \(\Delta\)BIC và \(\Delta\)BKC có:
\(\widehat{IBC}=\widehat{KBC}\left(=30^o\right)\)
BC chung
\(\widehat{ICB}=\widehat{KCB}\left(=20^o\right)\)
=> \(\Delta\)BIC = \(\Delta\)BKC
=> CK =CI (3)
(2); (3) => CI =CA => \(\Delta\)ACI cân tại C
b) \(\Delta\)ACI cân tại C có: \(\widehat{ACI}=20^o\) (theo (i) )
=> \(\widehat{CIA}=\widehat{CAI}=\frac{180^o-\widehat{ACI}}{2}=80^o\)
=> \(\widehat{BAI}=\widehat{BAC}-\widehat{CAI}=100^o-80^o=20^o\)
a, tam giác ABC vuông tại A (gt)
=> góc ABC + góc ACB = 90 (Đl)
góc ABC = 60 (gt)
=> góc ACB = 30
b, xét tam giácCAB và tam giác MAB có : AB chung
AM = AC (gt)
góc CAB = góc MAB = 90
=> tam giác CAB = tam giác MAB (2cgv)
=> góc CBA = góc MBA (đn) mà BA nằm giữa BC và BM
=> BA là pg của góc MBC (đn)
Xét tứ giác ABCD có \(\widehat{A}+\widehat{C}=180^0\)
nên ABCD là tứ giác nội tiếp
Suy ra: \(\widehat{ACB}=\widehat{ADB}\)(hai góc nội tiếp cùng chắn cung AB) và \(\widehat{BAC}=\widehat{BDC}\)(hai góc nội tiếp cùng chắn cung BC)
mà \(\widehat{ADB}=\widehat{BDC}\)
nên \(\widehat{BAC}=\widehat{BCA}\)
Xét ΔABC có \(\widehat{BAC}=\widehat{BCA}\)
nên ΔBAC cân tại B