K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 1 2022

\(\left(x+2\right)\left(x-3\right)+3=\left(x-4\right)\left(x+2\right)-7\)

\(\Leftrightarrow x^2-x-6+3=x^2-2x-8-7\)

\(\Leftrightarrow x^2-x-x^2+2x=6-3-8-7\)

\(\Leftrightarrow x=-12\)

Vậy: Phương trình có tập nghiệm \(S=\left\{-12\right\}\)

 

22 tháng 1 2022

\(x^2-3x+2x-6+3-x^2-2x+4x+8+7=0\)

\(x+12=0\)

\(x=-12\)

28 tháng 6 2018

Giải:

\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)

ĐKXĐ: \(x\ne\left\{1;2;3;4\right\}\)

\(\dfrac{1}{\left(x-1\right)\left(x-2\right)}+\dfrac{1}{\left(x-3\right)\left(x-2\right)}=\dfrac{1}{\left(x-3\right)\left(x-4\right)}+\dfrac{1}{\left(x-1\right)\left(x-4\right)}\)

\(\Rightarrow\left(x-3\right)\left(x-4\right)+\left(x-1\right)\left(x-4\right)=\left(x-1\right)\left(x-2\right)+\left(x-2\right)\left(x-3\right)\)

\(\Leftrightarrow\left(x-4\right)\left[\left(x-3\right)+\left(x-1\right)\right]=\left(x-2\right)\left[\left(x-1\right)+\left(x-3\right)\right]\)

\(\Leftrightarrow x-4=x-2\)

\(\Leftrightarrow0x=2\)

Vậy ...

NV
3 tháng 4 2019

\(x\ne\pm2\)

Đặt \(\left\{{}\begin{matrix}\frac{x+3}{x-2}=a\\\frac{x-3}{x+2}=b\end{matrix}\right.\) phương trình trở thành:

\(a^2+6b^2=7ab\)

\(\Leftrightarrow a^2-7ab+6b^2=0\)

\(\Leftrightarrow a^2-ab-6ab+6b^2=0\)

\(\Leftrightarrow a\left(a-b\right)-6b\left(a-b\right)=0\)

\(\Leftrightarrow\left(a-6b\right)\left(a-b\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=b\\a=6b\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{x+3}{x-2}=\frac{x-3}{x+2}\\\frac{x+3}{x-2}=\frac{6\left(x-3\right)}{x+2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)\left(x+2\right)=\left(x-3\right)\left(x-2\right)\\\left(x+3\right)\left(x+2\right)=6\left(x-3\right)\left(x-2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}5x=-5x\\x^2-7x+6=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=6\end{matrix}\right.\)

NV
26 tháng 2 2021

\(\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3-3xy\left(x+y\right)+\left(xy\right)^3+7\left(xy+x+y+1\right)=31\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)=2\\\left(x+y\right)^3+\left(xy\right)^3+7\left(xy+x+y\right)=30\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+y=u\\xy=v\end{matrix}\right.\) với \(u^2\ge4v\)

\(\Rightarrow\left\{{}\begin{matrix}uv=2\\u^3+v^3+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3-3uv\left(u+v\right)+7\left(u+v\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\\left(u+v\right)^3+\left(u+v\right)-30=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=2\\u+v=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}u=2\\v=1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=1\end{matrix}\right.\) \(\Leftrightarrow\left(x;y\right)=\left(1;1\right)\)

NV
26 tháng 2 2021

2.

ĐKXĐ: \(0\le x\le\dfrac{3}{2}\)

\(\Leftrightarrow9x\left(3-2x\right)+81+54\sqrt{x\left(3-2x\right)}=49x+25\left(3-2x\right)+70\sqrt{x\left(3-2x\right)}\)

\(\Leftrightarrow9x^2-14x-3+8\sqrt{x\left(3-2x\right)}=0\)

\(\Leftrightarrow9\left(x^2-2x+1\right)-4\left(3-x-2\sqrt{x\left(3-2x\right)}\right)=0\)

\(\Leftrightarrow9\left(x-1\right)^2-\dfrac{36\left(x-1\right)^2}{3-x+2\sqrt{x\left(3-2x\right)}}=0\)

\(\Leftrightarrow9\left(x-1\right)^2\left(1-\dfrac{4}{3-x+2\sqrt{x\left(3-2x\right)}}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\3-x+2\sqrt{x\left(3-2x\right)}=4\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{x\left(3-2x\right)}=x+1\)

\(\Leftrightarrow4x\left(3-2x\right)=x^2+2x+1\)

\(\Leftrightarrow9x^2-10x+1=0\Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{9}\end{matrix}\right.\)

30 tháng 3 2020

ĐK: \(x\in R\backslash\left\{-4,-3,-2,-1\right\}\)

PT ban đầu

\(\Leftrightarrow\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}+\frac{x+3-x-2}{\left(x+2\right)\left(x+3\right)}+\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}+\frac{x+5-x-4}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+5}=403\\ \Leftrightarrow x+5=\frac{1}{403}\Leftrightarrow x=\frac{-2014}{403}\)

Chúc bạn học tốt nhaok.

30 tháng 3 2020

Sr bạn nha, nhưng điều kiện là \(x\in R\backslash\left\{-5,-4,-3,-2,-1\right\}\). (Xét thiếu :>)

Chúc bạn học tốt nhaok.

13 tháng 1 2019

\(\left\{{}\begin{matrix}\left|x-1\right|+\left|y+2\right|=2\\4\left|x-1\right|+3\left|y+2\right|=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left|x-1\right|+\left|y+2\right|=2\\4x-4+3y+6=7\end{matrix}\right.\)

\(\left\{{}\begin{matrix}x+y=1\\4x+3y=8\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=-4\\4x+3.-4=8\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y=4\\x=5\end{matrix}\right.\)

Vậy HPT có 1 nghiệm duy nhất (5;4)

21 tháng 12 2022

Đặt |x-1|=a; |y+2|=b

Theo đề, ta có; a+b=2 và 4a+3b=7

=>a=1; b=1

=>|x-1|=1 và |y+2|=1

=>\(\left\{{}\begin{matrix}x\in\left\{2;0\right\}\\y\in\left\{-1;-3\right\}\end{matrix}\right.\)