K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(\widehat{HMC}=30^0\)

b: Xét ΔMHC vuông tại H và ΔMKA vuông tại K có

MC=MA

\(\widehat{CMH}=\widehat{AMK}\)

Do đó: ΔMHC=ΔMKA

Suy ra: MH=MK

Xét tứ giác AHCK có

M là trung điểm của AC

M là trung điểm của HK

Do đó: AHCK là hình bình hành

Suy ra: AH//CK

12 tháng 3 2018

a) Do ABC là tam giác cân tại A nên AH là đường cao hay đồng thời là đường phân giác.

Xét tam giác vuông AMH và tam giác vuông ANH có:

Cạnh AH chung

\(\widehat{MAH}=\widehat{NAH}\)

\(\Rightarrow\Delta AMH=\Delta ANH\)  (Cạnh huyền - góc nhọn)

\(\Rightarrow HM=HN.\)

b) Dễ dàng thấy ngay AC là đường trung trực của HF.

Khi đó thì AH = AF; CH = CF

Xét tam giác AHC và tam giác AFC có:

Cạnh AC chung

AH - AF

CH = CF

\(\Rightarrow\Delta AHC=\Delta AFC\left(c-c-c\right)\)

\(\Rightarrow\widehat{AFC}=\widehat{AHC}=90^o\Rightarrow AF\perp CF.\)

c) Ta thấy ngay \(\Delta HIN=\Delta FCN\left(g-c-g\right)\)

\(\Rightarrow IN=CN\)

Xét tam giác vuông INF và tam giác vuông CNH có:

HN = FN

IN = CN

\(\Rightarrow\Delta INF=\Delta CNH\)  (Hai cạnh góc vuông)

\(\Rightarrow\widehat{IFN}=\widehat{CHN}\)

Mà chúng lại ở vị trí so le trong nên IF // BC.

d) Chứng minh tương tự câu c, ta có IE // BC

Vậy thì qua I có hai tia IE và IF cùng song song với BC nên chúng trùng nhau.

Vậy I, E, F thẳng hàng.

19 tháng 6 2020

tự kẻ hình nha

a) vì AB=AC=> tam giác ABC cân A=> ABC=ACB=180-90/2=45 độ

xét tam giác ABM và tam giác ACM có

AB=AC(gt)

ABC=ACB(cmt)

BM=CM(gt)

=> tam giác ABM= tam giác ACM(cgc)

b) phải là AM//CK nha

từ tam giác ABM= tam giác ACM=> AMB=AMC(hai góc tương ứng)

mà AMB+AMC=180 độ (kề bù)

=> AMB=AMC=180/2=90 độ=> AM vuông góc với BC, CK vuông góc với BC

=> AM//CK

c) vì tam giác BCK vuông tại C=> CBK+BKC=90 độ=> BKC=90-45=45 độ

21 tháng 12 2022

a: Xét ΔADE có

AG vừa là đường cao, vừa là phân giác

nên ΔADE cân tại A

=>AD=AE

b: góc BFD=góc DEA

góc BDF=góc BEA

Do đo: góc BFD=góc BDF

=>ΔBFD cân tại B

c: Xét ΔBMF và ΔCME có

góc BMF=góc CME
MB=MC

góc MBF=góc MCE
Do đó: ΔBMF=ΔCME

=>MF=ME

=>M là trung điểm của EF

=>BD=CE