Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
X x \(\dfrac{3}{4}\)+ X x\(\dfrac{1}{5}\)+ X x \(\dfrac{1}{20}\)+ X= 1000
\(\dfrac{2}{5}\times\dfrac{1}{7}+\dfrac{2}{7}\times\dfrac{2}{5}\)
\(=\dfrac{2}{5}\times\left(\dfrac{1}{7}+\dfrac{2}{7}\right)\)
\(=\dfrac{2}{5}\times\dfrac{3}{7}\)
\(=\dfrac{6}{35}\)
\(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(x+\dfrac{1}{6}=\dfrac{3}{4}\)
\(x=\dfrac{9}{12}-\dfrac{2}{12}\)
\(x=\dfrac{7}{12}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2020}\right)+x=\dfrac{1}{2}\)
\(\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2019}{2020}+x=\dfrac{1}{2}\)
\(\dfrac{1}{2020}+x=\dfrac{1}{2}\)
\(x=\dfrac{1}{2}-\dfrac{1}{2020}\)
\(x=\dfrac{1010}{2020}-\dfrac{1}{2020}\)
\(x=\dfrac{1009}{2020}\)
\(\dfrac{2}{5}\times\dfrac{1}{7}+\dfrac{2}{7}\times\dfrac{2}{5}\)
\(=\dfrac{2}{5}\times\left(\dfrac{1}{7}+\dfrac{2}{7}\right)\)
\(=\dfrac{2}{5}\times\dfrac{3}{7}\)
\(=\dfrac{6}{35}\)
\(x+\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}\)
\(\Rightarrow\dfrac{1}{2}\times\dfrac{1}{3}=\dfrac{3}{4}-x\)
\(\Rightarrow\dfrac{3}{4}-x=\dfrac{1}{6}\)
\(\Rightarrow x=\dfrac{3}{4}-\dfrac{1}{6}=\dfrac{7}{12}\)
\(\left(1-\dfrac{1}{2}\right)\times\left(1-\dfrac{1}{3}\right)\times\left(1-\dfrac{1}{4}\right)\times...\times\left(1-\dfrac{1}{2020}\right)+x=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2}\times\dfrac{2}{3}\times\dfrac{3}{4}\times...\times\dfrac{2019}{2020}+x=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1\times2\times3\times4\times...\times2019}{2\times3\times4\times5\times...\times2020}+x=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{1}{2020}+x=\dfrac{1}{2}\)
\(\Rightarrow x=\dfrac{1}{2}-\dfrac{1}{2020}=\dfrac{1009}{2020}\)
Ta có: \(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right).\left(x+2\right)}+\frac{1}{\left(x+2\right).\left(x+3\right)}-\frac{1}{x}=\frac{1}{2020}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2020}\)
\(\Leftrightarrow-\frac{1}{\left(x+3\right)}=\frac{1}{2020}\)
\(\Rightarrow-\left(x+3\right)=2020\)
\(\Leftrightarrow-x-3=2020\)
\(\Leftrightarrow-x=2023\)
\(\Leftrightarrow x=-2023\)
Vậy \(x=-2023\)
Bài làm:
Ta có: \(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2020}\)
\(\Leftrightarrow\frac{\left(x+1\right)-x}{x\left(x+1\right)}+\frac{\left(x+2\right)-\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}+\frac{\left(x+3\right)-\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2020}\)
\(\Leftrightarrow\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2020}\)
\(\Rightarrow\frac{1}{-x-3}=\frac{1}{2020}\)
\(\Rightarrow-x-3=2020\Rightarrow x=-2023\)
\(\frac{1}{9}.3^4.3^x=3^7\)
\(\Leftrightarrow3^x=3^7:\frac{1}{9}:3^4=243\)
\(\Leftrightarrow3^x=3^5\)
\(\Leftrightarrow x=5\)
a) \(\frac{8}{9}\cdot x-\frac{2}{3}=\frac{1}{3}\cdot x+1\frac{1}{3}\)
=> \(\frac{8x}{9}-\frac{2}{3}=\frac{x}{3}+\frac{4}{3}\)
=> \(\frac{8x}{9}-\frac{6}{9}=\frac{x+4}{3}\)
=> \(\frac{8x-6}{9}=\frac{x+4}{3}\)
=> \(3\left(8x-6\right)=9\left(x+4\right)\)
=> \(24x-18=9x+36\)
=> \(24x-18-9x=36\)
=> \(24x-9x=54\)
=> \(15x=54\)
=> \(5x=18\)
=> \(x=\frac{18}{5}\)
Vậy x = \(\frac{18}{5}\)
b) \(\left(x-\frac{1}{2}\right)\left(\frac{3}{2}-2x\right)=0\)
=> \(\orbr{\begin{cases}x-\frac{1}{2}=0\\\frac{3}{2}-2x=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\2x=\frac{3}{2}\end{cases}}\)
=> \(\orbr{\begin{cases}x=\frac{1}{2}\\x=\frac{3}{2}:2=\frac{3}{4}\end{cases}}\)
Vậy \(x\in\left\{\frac{1}{2};\frac{3}{4}\right\}\)
1: \(x\left(x-1\right)+\left(1+x\right)^2\)
\(=x^2-x+x^2+2x+1\)
\(=2x^2+x+1\)
Đa thức này ko phân tích được nha bạn
2: \(\left(x+1\right)^2-3\left(x+1\right)\)
\(=\left(x+1\right)\cdot\left(x+1\right)-\left(x+1\right)\cdot3\)
\(=\left(x+1\right)\left(x+1-3\right)\)
\(=\left(x+1\right)\left(x-2\right)\)
3: \(2x\cdot\left(x-2\right)-\left(x-2\right)^2\)
\(=2x\left(x-2\right)-\left(x-2\right)\cdot\left(x-2\right)\)
\(=\left(x-2\right)\left(2x-x+2\right)\)
\(=\left(x-2\right)\left(x+2\right)\)
4: \(3x\left(x-1\right)^2-\left(1-x\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^3\)
\(=3x\left(x-1\right)^2+\left(x-1\right)^2\cdot\left(x-1\right)\)
\(=\left(x-1\right)^2\cdot\left(3x+x-1\right)\)
\(=\left(x-1\right)^2\cdot\left(4x-1\right)\)
5: \(3x\left(x+2\right)-5\left(x+2\right)^2\)
\(=\left(x+2\right)\cdot3x-\left(x+2\right)\cdot\left(5x+10\right)\)
\(=\left(x+2\right)\left(3x-5x-10\right)\)
\(=\left(-2x-10\right)\left(x+2\right)\)
\(=-2\left(x+5\right)\left(x+2\right)\)
6: \(4x\left(x-y\right)+3\left(y-x\right)^2\)
\(=4x\left(x-y\right)+3\left(x-y\right)^2\)
\(=\left(x-y\right)\cdot4x+\left(x-y\right)\left(3x-3y\right)\)
\(=\left(x-y\right)\cdot\left(4x+3x-3y\right)\)
\(=\left(x-y\right)\left(7x-3y\right)\)
1 / 5 + x = 3 / 7 + 1 / 3
1 / 5 + x = 16 /21
x = 16 / 21 - 1 / 5
x = 59 / 105
x - 1 / 2 = 2 / 3 - 1 / 5
x - 1 / 2 = 7 / 15
x = 7 / 15 + 1 / 2
x = 29 / 30
3 / 5 * x = 2 / 7+ 1 / 4
3 / 5 * x = 15 / 28
x = 15 / 28 : 3 / 5
x = 25 / 28
7 / 8 : x = 1 / 6 * 2 / 3
7 / 8 : x = 1 / 9
x = 7 / 8 : 1 / 9
x = 63 / 8
bằng 33
=33
chúc bn hok tốt nha