a, CMR: 13+23+33+.....+20163 luôn là số chính phương
b, Cho các số nguyên a1, a2, a3,....a2016 có tổng luôn chia hết cho 5
CMR: A = a13 + a23 + a33 + ..... +a20163 cũng chia hết cho 5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
Gọi số cần tìm là \(n\)(\(n\in Z\)|\(n\le0\))
Theo đề bài ta có:
\(5n-6⋮n+3\)
\(5n+15-21⋮n+3\)
\(5\left(n+3\right)-21⋮n+3\)
\(\Rightarrow-21⋮n+3\)
\(\Rightarrow n+3\inƯ\left(-21\right)\)
\(Ư\left(-21\right)=\left\{-21;-7;-3;-1;1;3;7;21\right\}\)
Ta có bảng sau:
n+3 | -21 | -7 | -3 | -1 | 1 | 3 | 7 | 21 |
n | -24 | -10 | -6 | -4 | -2 | 0 | 4 | 18 |
Ta thấy n chỉ có 0;4;18 thỏa mãn điều kiện
Vậy các số cần tìm là 0;4;18
Ai giúp tớ với, nhanh lên gấp lắm :(
Ta sẽ chứng minh:
\(1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\)
Đẳng thức trên có thể chứng minh bằng quy nạp.
Áp dụng ào bài toán cho ra cả phần a và b.