Giúp mình với.
Chứng minh (1-1/3)(1-1/6)(1-1/10)...(1-1/253)<2/5
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tích trên có thừa số 1 - 253 = -252 còn các thừa số kia trong tích đều dương. Vậy tích trên âm.
Mà 2/5 dương nên đpcm
(1−13)(1−16)...(1−1253)
=23⋅56⋅...⋅252253=46⋅1012⋅...⋅504506
=1⋅42⋅3⋅2⋅53⋅4⋅...⋅21⋅2422⋅23
=1⋅2⋅3⋅42⋅52⋅...⋅212⋅22⋅23⋅242⋅32⋅42⋅...⋅222⋅23=1⋅243⋅22=2466<25
ta có:
\(\frac{1}{3^2}=\frac{1}{3\cdot3}< \frac{1}{2\cdot3}\),
\(\frac{1}{4^2}=\frac{1}{4\cdot4}< \frac{1}{3\cdot4}...\)
\(\frac{1}{10^2}=\frac{1}{10\cdot10}< \frac{1}{9\cdot10}\)
Từ trên => A < \(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{9\cdot10}\)
=> \(A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{9}-\frac{1}{10}\)
=> \(A< \frac{1}{2}-\frac{1}{10}=\frac{5}{10}-\frac{1}{10}=\frac{4}{10}=\frac{2}{5}\)
=> \(A< \frac{2}{5}\)mà \(\frac{2}{5}< \frac{1}{2}\)
=> \(A< \frac{1}{2}\)=> \(\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{10^2}< \frac{1}{2}\)
Chúc bn học tốt !
a/(Sửa đề bài) A= 1/2 + 2/22 + 3/23 + 4/24 +..+ 100/2100 => 1/2A = 1/22 + 2/23 + 3/24 +..+ 100/2101 => A - 1/2A = 1/2 + 2/22 +..+ 100/2100 - 1/22 - 2/23 -..- 100/2101 => 1/2A = 1/2 + 1/22 + 1/23 +..+ 1/2100 - 100/2101 Gọi riêng cụm (1/2 + 1/22 +..+ 1/2100) là B => 2B = 1 + 1/2 + 1/22 +..+ 1/299 => 2B-B = B = 1+ 1/2 +1/22 +..+ 1/299 - 1/2 - 1/22 -..- 1/2100 = 1 - 1/2100 => 1/2A = 1 - 1/2100 - 100/2101 Có 1/2A < 1 => A < 2 =>ĐPCM b/ => 1/3C = 1/32 + 2/33 + 3/34 +..+ 100/3101 => C - 1/3C = 2/3C = 1/3 + 2/32 +..+ 100/3100 - 1/32 - 2/33 -..- 100/3101 = 1/3 + 1/32 + 1/33 +..+ 1/3100 - 100/3101 Gọi riêng cụm (1/3 + 1/32 +..+ 1/3100) là D => 3D = 1 + 1/3 +..+ 1/399 => 3D - D = 2D = 1 + 1/3 +..+1/399 - 1/3 -1/32 -..- 1/3100 = 1 - 1/3100 => 2/3C *2 = 4/3C = 1 - 1/3100 - 200/3101 Có 4/3C < 1 => C<3/4 => ĐPCM Tạm thời thế đã, giải tiếp đc con nào mình sẽ gửi sau :)