Chứng minh rằng nếu a là số nguyên thì a2+a-1/a2+a+1 là một phân số tối giản
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
NT
0
MT
0
20 tháng 2 2018
Ta có : \(A=\frac{a^2+a-1}{a^2+a+1}=\frac{a^2+a+1-2}{a^2+a+1}=1-\frac{2}{a^2+a+1}\)
\(\Rightarrow\)a nguyên thì A là p/s tối giản
=> ĐPCM
\(\left(a^2+a-1;a^2+a+1\right)=\left(2;a^2+a+1\right)=1\)
Vì a2 + a +1 = a(a+1) + 1 = 2k +1 là số lẻ.
oeoe