Cho tam giác ABC có AB>AC. Trên cạnh AB lấy điểm D sao cho BD = AC.Gọi M, N lần lượt là trung điểm của BC và AD. Các đường thẳng MN và AC cắt nhau tại K. Chứng minh rằng góc BNM = góc MKC (Giải bằng 4 cách khác nhau)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét t/g ABD và t/g AED có:
AB = AE (gt)
BAD = EAD (gt)
AD là cạnh chung
Do đó, t/g ABD = t/g AED (c.g.c) (đpcm)
b) t/g ABD = t/g AED (câu a)
=> BD = ED (2 cạnh tương ứng)
ABD = AED (2 góc tương ứng)
Có: ABD + DBF = 180o( kề bù)
AED + DEC = 180o ( kề bù)
Nên DBF = DEC
Có: AF = AC (gt)
AB = AE (gt)
=> AF - AB = AC - AE
=> BF = CE
Xét t/g BDF và t/g EDC có:
BF = EC (cmt)
DBF = DEC (cmt)
BD = ED (cmt)
Do đó, t/g BDF = t/g EDC (c.g.c) (đpcm)
c) Gọi K là giao điểm của FC và DA ( kéo dài)
Dễ thấy, t/g AKF = t/g AKC (c.g.c)
=> AKF = AKC (2 góc tương ứng)
Mà AKF + AKC = 180o ( kề bù)
=> AKF = AKC = 90o
=> AK _|_ CF hay AD _|_ CF (đpcm)
a: Xét ΔMBD vuông tại D và ΔNCE vuông tại E có
DB=CE
\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACB}\right)\)
Do đó: ΔMBD=ΔNCE
Suy ra: DM=EN
a) Vì ΔABCΔ��� cân tại A(gt)�(��)
=> ˆABC=ˆACB���^=���^ (tính chất tam giác cân).
Mà ˆACB=ˆNCE���^=���^ (vì 2 góc đối đỉnh).
=> ˆABC=ˆNCE.���^=���^.
Hay ˆMBD=ˆNCE.���^=���^.
Xét 2 ΔΔ vuông BDM��� và CEN��� có:
ˆBDM=ˆCEN=900(gt)���^=���^=900(��)
BD=CE(gt)��=��(��)
ˆMBD=ˆNCE(cmt)���^=���^(���)
=> ΔBDM=ΔCENΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).
=> DM=EN��=�� (2 cạnh tương ứng).
b) Xét 2 ΔΔ vuông DMI��� và ENI��� có:
ˆMDI=ˆNEI=900(gt)���^=���^=900(��)
DM=EN(cmt)��=��(���)
ˆDIM=ˆEIN���^=���^ (vì 2 góc đối đỉnh)
=> ΔDMI=ΔENIΔ���=Δ��� (cạnh góc vuông - góc nhọn kề).
=> MI=NI��=�� (2 cạnh tương ứng).
=> I là trung điểm của MN.��.
Mà I∈BC(gt)�∈��(��)
=> Đường thẳng BC�� cắt MN�� tại trung điểm I của MN(đpcm).��(đ���).