K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔOAB và ΔOCD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{DOC}\)

Do đó: ΔOAB\(\sim\)ΔOCD
Suy ra: OA/OC=OB/OD

hay \(OA\cdot OD=OB\cdot OC\)

10 tháng 10 2017

Vì AB//CD, áp dụng định lý Ta-lét, ta có: O A O C   =   O B O D  

Từ đó suy ra ĐPCM

7 tháng 2 2022

Xét tam giác OAB và tam giác OCD ta có : 

^AOB = ^COD ( đối đỉnh ) 

^OAB = ^OCD ( so le trong ) 

Vậy tam giác OAB ~ tam giác OCD ( g.g ) 

=> OA/OC = OB/OD => OA.OD = OC.OB 

7 tháng 2 2022

Vì AB//CD nên:

\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)  ( hệ quả đl ta-lét)

từ đó suy ra : OA.OD=OB.OC(đpcm)

17 tháng 8 2021

d) Tính các góc của hình thang ABCD nếu biết ˆABC−ˆADC=80

 

17 tháng 8 2021

giúp mình giải câu d thôi cũng đc

a) Xét ΔADE vuông tại E và ΔBCF vuông tại F có 

AD=BC(ABCD là hình thang cân)

\(\widehat{ADE}=\widehat{BCF}\)(ABCD là hình thang cân)

Do đó: ΔADE=ΔBCF(Cạnh huyền-góc nhọn)

Suy ra: DE=CF(Hai cạnh tương ứng)

b) Xét ΔADB và ΔBCA có 

AD=BC(ABCD là hình thang cân)

AB chung

DB=CA(ABCD là hình thang cân)

Do đó: ΔADB=ΔBCA(c-c-c)

Suy ra: \(\widehat{DBA}=\widehat{CAB}\)(hai góc tương ứng)

hay \(\widehat{IAB}=\widehat{IBA}\)

Xét ΔIAB có \(\widehat{IAB}=\widehat{IBA}\)(cmt)

nên ΔIAB cân tại I(Định lí đảo của tam giác cân)

Suy ra: IA=IB

 

c) Ta có: \(\widehat{OAB}=\widehat{ODC}\)(hai góc đồng vị, AB//CD)

\(\widehat{OBA}=\widehat{OCD}\)(hai góc đồng vị, AB//CD)

mà \(\widehat{ODC}=\widehat{OCD}\)(ABCD là hình thang cân)

nên \(\widehat{OAB}=\widehat{OBA}\)

Xét ΔOAB có \(\widehat{OAB}=\widehat{OBA}\)(cmt)

nên ΔOAB cân tại O(Định lí đảo của tam giác cân)

Suy ra: OA=OB

Ta có: OA+AD=OD(A nằm giữa O và D)

OB+BC=OC(B nằm giữa O và C)

mà OA=OB(cmt)

và AD=BC(ABCD là hình thang cân)

nên OD=OC

Ta có: IA+IC=AC(I nằm giữa A và C)

IB+ID=BD(I nằm giữa B và D)

mà IA=IB(cmt)

và AC=BD(cmt)

nên IC=ID

Ta có: OA=OB(cmt)

nên O nằm trên đường trung trực của AB(1)

Ta có: IA=IB(cmt)

nên I nằm trên đường trung trực của AB(2)

Ta có: OD=OC(cmt)

nên O nằm trên đường trung trực của DC(3)

Ta có: ID=IC(cmt)

nên I nằm trên đường trung trực của DC(4)

Từ (1) và (2) suy ra OI là đường trung trực của AB

Từ (3) và (4) suy ra OI là đường trung trực của DC

14 tháng 3 2021

Bạn tự vẽ hình nhé

Xét \(\Delta ACD\) có OE // CD(gt)

=> \(\dfrac{OE}{DC}=\dfrac{AO}{AC}\left(1\right)\)

Xét \(\Delta BCD\) có OF // CD (gt)

=> \(\dfrac{OF}{DC}=\dfrac{BF}{FC}\left(2\right)\)

Mặt khác AB // CD nên  \(\dfrac{AO}{AC}=\dfrac{BF}{FC}\left(3\right)\)

Từ \(\left(1\right),\left(2\right),\left(3\right)\)

=> \(\dfrac{OE}{DC}=\dfrac{OF}{DC}\) => OE = OF

 

Xét ΔADC có OM//DC

nên OM/DC=AM/AD

Xét ΔBDC có ON//DC

nên ON/DC=BN/BC

Xét hình thang ABCD có MN//AB//CD

nên AM/AD=BN/BC

=>OM/DC=ON/DC

=>OM=ON

=>MN=2OM

OM//AB

=>OM/AB=DM/DA

OM//DC

=>OM/DC=AM/AD

=>OM/DC+OM/AB=DM/DA+AM/AD=1

=>1/AB+1/CD=1/OM

mà OM=1/2MN

nên 1/AB+1/CD=2/MN